Air Quality Prediction Based on Spatio-Temporal Feature Fusion over Graphs
Abstract
1. Introduction
1.1. Physics-Based Numerical Models
1.2. Data-Driven Models
1.3. Graph Network-Based Models
1.4. Physics-Informed Neural Network Models
2. Materials and Methods
2.1. Data Used
2.2. Problem Formulation
2.3. Methods
2.3.1. Location-Based Directed Graph Design
2.3.2. Graph-Based Spatial Feature Module
2.3.3. Graph-Based Spatio-Temporal Feature Extraction Module
2.3.4. Output Fusion Unit
3. Results and Discussions
3.1. Numerical Studies
3.2. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organization WHO. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 12 June 2024).
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 2012, 60, 656–676. [Google Scholar] [CrossRef]
- Gao, W.; Xiao, T.; Zou, L.; Li, H.; Gu, S. Analysis and Prediction of Atmospheric Environmental Quality Based on the Autoregressive Integrated Moving Average Model (ARIMA Model) in Hunan Province, China. Sustainability 2024, 16, 8471. [Google Scholar] [CrossRef]
- Dong, M.; Yang, D.; Kuang, Y.; He, D.; Erdal, S.; Kenski, D. PM2.5 concentration prediction using hidden semi-Markov model-based times series data mining. Expert Syst. Appl. 2009, 36, 9046–9055. [Google Scholar] [CrossRef]
- Du, S.; Li, T.; Yang, Y.; Horng, J. Deep air quality forecasting using hybrid deep learning framework. IEEE Trans. Knowl. Data Eng. 2019, 33, 2412–2424. [Google Scholar] [CrossRef]
- Samal, R.; Babu, S.; Das, K. Temporal convolutional denoising autoencoder network for air pollution prediction with missing values. Urban Clim. 2021, 38, 100872. [Google Scholar] [CrossRef]
- Han, Y.; Lam, C.; Li, O.; Zhang, Q. A domain-specific Bayesian deep-learning approach for air pollution forecast. IEEE Trans. Big Data 2020, 8, 1034–1046. [Google Scholar] [CrossRef]
- Yu, H.; Hu, J.; Zhou, X.; Guo, C.; Yang, B.; Li, Q. CGF: A Category Guidance Based PM2.5 Sequence Forecasting Training Framework. IEEE Trans. Knowl. Data Eng. 2023, 35, 10125–10139. [Google Scholar] [CrossRef]
- Tong, W.; Limperis, J.; Hamza-Lup, F.; Xu, Y.; Li, L. Robust transformer-based model for spatiotemporal PM2.5 prediction in California. Earth Sci. Inform. 2023, 17, 315–328. [Google Scholar] [CrossRef]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Elbaz, K.; Shaban, M.; Zhou, A.; Shen, L. Real time image-based air quality forecasts using a 3D-CNN approach with an attention mechanism. Chemosphere 2023, 333, 138867. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, L.; Zhu, S.; Gao, Y.; Qiu, X.; Chen, L. Long-term PM2.5 concentrations forecasting using CEEMDAN and deep Transformer neural network. Atmos. Pollut. Res. 2023, 14, 101839. [Google Scholar] [CrossRef]
- Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. Geoman: Multi-level attention networks for geo-sensory time series prediction. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3428–3434. [Google Scholar]
- Hu, J.; Liang, Y.; Fan, Z.; Chen, H.; Zheng, Y.; Zimmermann, R. Graph neural processes for spatio-temporal extrapolation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2023; pp. 752–763. [Google Scholar]
- Qi, B.; Jiang, Y.; Wang, H.; Jin, J. Multi-Source PM2.5 Prediction Model Based on Fusion of Graph Attention Networks and Multiple Time Periods. IEEE Access 2024, 12, 57603–57612. [Google Scholar] [CrossRef]
- Shao, W.; Jin, Z.; Wang, S.; Kang, Y.; Xiao, X.; Menouar, H.; Salim, F. Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Bremen, Germany, 15–21 July 2022; pp. 2225–2232. [Google Scholar]
- Jin, Z.; Xu, J.; Huang, R.; Shao, W.; Xiao, X. STM2CN: A multi-graph attention-based framework for sensor data prediction in smart cities. In Proceedings of the 2022 International Joint Conference on Neural Networks, Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Han, J.; Liu, H.; Xiong, H.; Yang, J. Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network. IEEE Trans. Knowl. Data Eng. 2022, 35, 5230–5243. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Wu, B.; Huang, J. Group-aware graph neural network for nationwide city air quality forecasting. ACM Trans. Knowl. Discov. Data 2023, 18, 1–20. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Q.; Xia, Y.; Huang, J.; Zhong, S.; Liang, Y. Spatio-temporal field neural networks for air quality inference. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, Jeju, Republic of Korea, 3–9 August 2024; Volume 13, pp. 7260–7268. [Google Scholar]
- Tian, J.; Liang, Y.; Xu, R.; Chen, P.; Guo, C.; Zhou, A.; Yang, B. Air Quality Prediction with Physics-Guided Dual Neural ODEs in Open Systems. In Proceedings of the Thirteenth International Conference on Learning Representations, Singapore, 24–28 April 2025. [Google Scholar]
- Wang, Q.; Xia, Y.; ZHong, S.; Li, W.; Wu, Y.; Cheng, S.; Liang, Y. Airradar: Inferring nationwide air quality in china with deep neural networks. Proc. AAAI Conf. Artif. Intell. 2025, 39, 28467–28475. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Zhang, J.; Meng, Q.; Meng, L.; Gao, F. PM2.5-GNN: A domain knowledge enhanced graph neural network for PM2.5 forecasting. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2020; pp. 163–166. [Google Scholar]
- Liang, Y.; Xia, Y.; Ke, S.; Wang, Y.; Wen, Q.; Zhang, J.; Zimmermann, R. AirFormer: Predicting nationwide air quality in china with transformers. Proc. AAAI Conf. Artif. Intell. 2023, 37, 14329–14337. [Google Scholar] [CrossRef]
- Hettige, K.H.; Ji, J.; Xiang, S.; Long, C.; Cong, G.; Wang, J. AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality Prediction. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7 May 2024. [Google Scholar]
- Xiao, Z.; Fang, H.; Wang, X. Distributed Nonlinear Polynomial Graph Filter and Its Output Graph Spectrum: Filter Analysis and Design. IEEE Trans. Signal Process. 2021, 69, 1725–1739. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Y.; Li, H.; Ma, T.; Ren, Y. Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction. Sustainability 2023, 15, 7696. [Google Scholar] [CrossRef]
- Zheng, Y.; Koh, H.; Jin, M.; Chi, L.; Phan, K.; Pan, S. Correlation-Aware Spatial–Temporal Graph Learning for Multivariate Time-Series Anomaly Detection. IEEE Trans. Neural Netw. 2023, 35, 11802–11816. [Google Scholar] [CrossRef] [PubMed]




| Parameters | Value |
|---|---|
| Window Length M | 24 |
| Number of Monitoring Stations N | 35 |
| Spatial Feature Order L | 2 |
| Feature Length R | 256 |
| Learning Rate | 4 |
| Number of Epochs | 100 |
| Weight Decay Parameters | 0.005 |
| Batch Size | 32 |
| 400 |
| MAE 24 h | MAE 48 h | MAE 72 h | |
|---|---|---|---|
| Model | (Standard Deviation) | (Standard Deviation) | (Standard Deviation) |
| AirPhyNet | 29.11 (22.13) | 36.69 (31.00) | 42.23 (38.02) |
| Proposed Method | 23.68 (18.25) | 33.32 (28.60) | 40.16 (35.08) |
| RMSE 24 h | RMSE 48 h | RMSE 72 h | |
|---|---|---|---|
| Model | (Standard Deviation) | (Standard Deviation) | (Standard Deviation) |
| AirPhyNet | 42.16 (25.23) | 48.66 (33.01) | 53.07 (39.66) |
| Proposed Method | 35.45 (20.68) | 44.48 (30.47) | 50.03 (36.49) |
| L | MAE 24 h | MAE 48 h | MAE 72 h |
|---|---|---|---|
| 0 | 25.34 | 34.01 | 40.64 |
| 1 | 24.81 | 33.91 | 40.97 |
| 2 | 23.68 | 33.32 | 40.16 |
| 3 | 25.22 | 33.93 | 40.52 |
| R | MAE 24 h | MAE 48 h | MAE 72 h |
|---|---|---|---|
| 64 | 25.84 | 34.24 | 40.70 |
| 128 | 24.80 | 33.59 | 40.61 |
| 256 | 23.68 | 33.32 | 40.16 |
| 512 | 24.14 | 34.02 | 40.93 |
| Model | MAE 24 h | MAE 48 h | MAE 72 h |
|---|---|---|---|
| Outlayer Without Spatial Feature | 24.77 | 33.68 | 40.79 |
| Temporal Feature Module without Spatial Feature | 25.47 | 33.70 | 40.67 |
| Model Without Temporal Feature | 25.12 | 33.81 | 40.33 |
| Proposed Method | 23.68 | 33.32 | 40.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Fu, X.; Su, B.; Fang, H. Air Quality Prediction Based on Spatio-Temporal Feature Fusion over Graphs. Processes 2025, 13, 3586. https://doi.org/10.3390/pr13113586
Cai J, Fu X, Su B, Fang H. Air Quality Prediction Based on Spatio-Temporal Feature Fusion over Graphs. Processes. 2025; 13(11):3586. https://doi.org/10.3390/pr13113586
Chicago/Turabian StyleCai, Jinjing, Xiaoran Fu, Binting Su, and He Fang. 2025. "Air Quality Prediction Based on Spatio-Temporal Feature Fusion over Graphs" Processes 13, no. 11: 3586. https://doi.org/10.3390/pr13113586
APA StyleCai, J., Fu, X., Su, B., & Fang, H. (2025). Air Quality Prediction Based on Spatio-Temporal Feature Fusion over Graphs. Processes, 13(11), 3586. https://doi.org/10.3390/pr13113586

