Characteristics of Spatiotemporal Distribution of Microbial Communities in the Riparian Zone of the Three Gorges Reservoir Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Measurement
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Altitudinal Distribution Characteristics of Microbial Communities
3.2. Seasonal Distribution Characteristics of Microbial Communities
4. Discussion
4.1. Altitudinal Distribution of Microbial Communities
4.2. Seasonal Distribution of Microbial Communities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, P.; Xu, H.; Liu, M.; Du, L.; Xiao, C.; Liu, L. Climate change impacts on Three Gorges reservoir impoundment and hydropower generation. J. Hydrol. 2020, 580, 123922. [Google Scholar] [CrossRef]
- Vidon, P.G.; Welsh, M.K.; Hassanzadeh, Y.T. Twenty years of riparian zone research (1997–2017): Where to next? J. Environ. Qual. 2019, 48, 248–260. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Machado, F.A.; Voss, M.; Boriss, H.; Junk, W.J. Floodpulse-induced isotopic changes in fish of the Pantanal wetland, Brazil. Aquat. Sci. 2002, 64, 239–251. [Google Scholar] [CrossRef]
- Wantzen, M.K.; Rothhaupt, K.; Mörtl, M.; Cantonati, M.; Tóth, L.G.; Fischer, P. Ecological effects of water-level fluctuations in lakes: An urgent issue. Hydrobiologia 2008, 613, 1–4. [Google Scholar] [CrossRef]
- Zhang, M.J.; O’Connor, P.J.; Zhang, J.Y.; Ye, X.X. Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone. Geoderma 2021, 384, 114801. [Google Scholar] [CrossRef]
- Eggleston, E.M.; Lee, D.Y.; Owens, M.S.; Cornwell, J.C.; Crump, B.C.; Hewson, I. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary. Environ. Microbiol. 2015, 17, 2306–2318. [Google Scholar] [CrossRef]
- Zhan, C. Microbial decomposition and soil health: Mechanisms and ecological implications. Mol. Soil Biol. 2024, 15, 59–70. [Google Scholar] [CrossRef]
- Tan, X.; Dong, Z.; Zhang, L.M.; Yuan, Z.X.; Li, C.X. Seasonal dynamics and functional prediction of bacterial community in the rhizosphere of two suitable herbaceous species in the riparian zone of the Three Gorges Reservoir Area. Acta Ecol. Sin. 2023, 43, 9699–9709. (In Chinese) [Google Scholar]
- Mei, Y.; Huang, P.; Wang, P.; Zhu, K. Effects of Water Level Fluctuations and Vegetation Restoration on Soil Prokaryotic Microbial Community Structure in the Riparian Zone of the Three Gorges Reservoir. Environ. Sci. 2024, 45, 2715–2726. (In Chinese) [Google Scholar]
- Liu, Y.Q.; Sun, Y.J.; Yu, J.S.; Xia, X.F.; Ding, A.Z.; Zhang, D.Y. Impacts of groundwater level fluctuation on soil microbial community, alkane degradation efficiency and alkane-degrading gene diversity in the critical zone: Evidence from an accelerated water table fluctuation simulation. Environ. Sci. Pollut. Res. 2022, 29, 83060–83070. [Google Scholar] [CrossRef]
- Afzal, J.; Yihong, Z.; Qayum, M.; Afzal, U.; Aslam, M. Effects of dam on temperature, humidity and precipitation of surrounding area: A case study of Gomal Zam Dam in Pakistan. Environ. Sci. Pollut. Res. 2023, 30, 14592–14603. [Google Scholar] [CrossRef]
- Khan, T.M.; Supronienė, S.; Žvirdauskienė, R.; Aleinikovienė, J. Climate, Soil, and Microbes: Interactions Shaping Organic Matter Decomposition in Croplands. Agronomy 2025, 15, 1928. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Wu, J.; Wu, L. Bacterial and Fungal Community Composition and Functional Activity Associated with Lake Wetland Water Level Gradients. Sci. Rep. 2018, 8, 760. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Yuan, J.; Wang, J.; Liu, X.; Ma, S.; Zhou, L. Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type. Microorganisms 2022, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Zhao, Y.; Kang, Z.; Ma, R.; Wright, A.L.; Jiang, X.J. Pyrolysis-assisted transesterification for accurate quantification of phospholipid fatty acids: Application to microbial community analysis in 1000-years paddy soil chronosequence. Geoderma 2022, 406, 115504. [Google Scholar] [CrossRef]
- Najdegerami, H.E.; Manaffar, R. Using a combination of phospholipid fatty acids profiles and DNA-based sequencing analyses to detect shifts in the biofloc microbial community in different carbon sources and carbon/nitrogen ratios. Vet. Res. Forum Int. Q. J. 2024, 15, 425–434. [Google Scholar]
- Fan, L.J.; Xue, Y.W.; Wu, D.H.; Xu, M.C.; Li, A.D.; Zhang, X.; Mo, J.M.; Zheng, M.H. Long-term nitrogen and phosphorus addition have stronger negative effects on microbial residual carbon in subsoils than topsoils in subtropical forests. Glob. Change Biol. 2024, 30, e17210. [Google Scholar] [CrossRef]
- Wang, D.Y.; Felice, M.L.; Scow, K.M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 2020, 152, 103570. [Google Scholar] [CrossRef]
- Li, Z.; Cao, S.L.; Zhu, H.Q.; Xie, P.; Jia, B.J. Study on CO2 Emissions in the Subsidence Area of the Three Gorges Reservoir near the Dam Section under Water Level Change. J. Yangtze River Sci. Res. Inst. 2025. Available online: https://kns.cnki.net/kcms2/article/abstract?v=2t0iREynv6l37J8bvNk1CcZ13llbOc8Ib0TG7B1325DdbIU534g_K0rVswMrzqzox8RU8-bhD8PnUJsEDL2LJoRoQKWcAwZFUvJmVt_x23a5LJd5opaAxpNTGs_mqdmoy_D59a8DElbtKfJrc5o832Dl8F-3lpszaRvXyjRenxzo6q3pub-yzQ==&uniplatform=NZKPT&language=CHS (accessed on 1 April 2025). (In Chinese).
- Zhang, S. The Effect of Alternating Wet and Dry Conditions on Soil Organic Carbon Decomposition. Master’s Thesis, Chongqing Three Gorges University, Chongqing, China, 2020. [Google Scholar] [CrossRef]
- Xiang, H.Y. Characterization of Soil Microbial Community Structure and Function Diversity Along the Water-Level Fluctuation in Tongzhuang River Riparian Zone of the Three Gorges Reservoir Area. Master’s Thesis, China Three Gorges University, Yichang, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Li, Q.H.; Wang, X.G.; Liu, X.L. Progress of Research of the Effect of Impounding on Soil and Vegetation in Water-Level Fluctuation Zone of the Three Gorges Reservoir. J. Hydroecol. 2024. (In Chinese) [Google Scholar] [CrossRef]
- Chen, S.Q.; Zhang, G.H.; Luo, Y.F.; Zhou, H.; Wang, K.W.; Wang, C.S. Soil erodibility indicators as affected by water level fluctuations in the Three Gorges Reservoir area, China. Catena 2021, 207, 105692. [Google Scholar] [CrossRef]
- Yang, W.H.; Qing, H.; Ren, Q.S.; He, Y.Y.; Li, X.X.; Li, C.X. Characteristics of soil microbial biomass C and N under revegetation in the hydro-fluctuation belt of the Three Gorges Reservoir Region. Acta Ecol. Sin. 2017, 37, 7947–7955. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X. The Effects of Plant Decomposition on Soil Carbon Pool in Poyang Lake Wetlands Driven by Water Conditions and the Soil Bacterial Response. Master’s Thesis, Nanchang University, Nanchang, China, 2021. (In Chinese). [Google Scholar] [CrossRef]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal evolution: Major ecological adaptations and evolutionary transitions. Biol. Rev. 2019, 94, 1443–1476. [Google Scholar] [CrossRef] [PubMed]
- Coleine, C.; Stajich, J.E.; Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. 2022, 37, 517–528. [Google Scholar] [CrossRef]
- Francioli, D.; Cid, G.; Kanukollu, S.; Ulrich, A.; Hajirezaei, M.R.; Kolb, S. Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Front. Microbiol. 2021, 12, 773116. [Google Scholar] [CrossRef]
- Martínez-Arias, C.; Witzell, J.; Solla, A.; Martin, A.J.; Rodríguez-Calcerrada, J. Beneficial and pathogenic plant-microbe interactions during flooding stress. Plant Cell Environ. 2022, 45, 2875–2897. [Google Scholar] [CrossRef]
- Xie, L.N.; Ge, Z.M.; Li, Y.L.; Li, S.H.; Tan, L.S.; Li, X.Z. Effects of waterlogging and increased salinity on microbial communities and extracellular enzyme activity in native and exotic marsh vegetation soils. Soil Sci. Soc. Am. J. 2020, 84, 82–98. [Google Scholar] [CrossRef]
- Qi, R.M.; Li, J.; Lin, Z.A.; Li, Y.T.; Yang, X.D.; Zhang, J.J.; Zhao, B.Q. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Arif, M.; Ding, D.; Hu, X.; Zheng, J.; Yuan, Z.; Li, C. Artificial plantation responses to periodic submergence in massive dam and reservoir riparian zones: Changes in soil properties and bacterial community characteristics. Biology 2021, 10, 819. [Google Scholar] [CrossRef]
- Dimitrova, K. Assessing microbial activity in soil samples collected during the transition period between seasons using the Biolog EcoPlate method. Ecol. Balk. 2024, 16, 187–204. [Google Scholar]
- Chao, Q.W.; Yakov, K. Mechanisms and implications of bacterial-fungal competition for soil resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef]
- Duran, K.; Kohlstedt, M.; Erven, G.; Klostermann, C.E.; America, A.H.P.; Bakx, E.; Baars, J.J.P.; Gorissen, A.; Visser, R.; Vries, R.P.; et al. From 13C-lignin to 13C-mycelium: Agaricus bisporus uses polymeric lignin as a carbon source. Sci. Adv. 2024, 10, eadl3419. [Google Scholar] [CrossRef]



| Index | Under 160 m | Between 160–170 m | Above 170 m |
|---|---|---|---|
| Soil organic carbon g/kg | 8.08 ± 0.29 | 11.39 ± 0.30 | 9.79 ± 0.32 |
| Soil nitrogen g/kg | 0.51 ± 0.03 | 0.71 ± 0.03 | 0.50 ± 0.02 |
| pH | 7.07 ± 0.01 | 7.16 ± 0.02 | 7.07 ± 0.02 |
| Index | Under 160 m | Between 160–170 m | Above 170 m | Average |
|---|---|---|---|---|
| Microbial biomass nmol/g | 0.97 ± 0.08 C | 4.53 ± 0.23 A | 2.08 ± 0.22 B | 2.53 |
| Fungi % | 15.64 ± 0.67 A | 9.87 ± 0.49 B | 8.39 ± 0.29 B | 11.30 |
| Bacteria % | 76.42 ± 0.58 C | 84.47 ± 0.68 A | 79.83 ± 0.48 B | 80.24 |
| Actinobacteria % | 5.18 ± 0.38 A | 4.18 ± 0.51 A | 5.86 ± 0.51 A | 5.07 |
| F/B | 0.21 ± 0.01 A | 0.12 ± 0.01 B | 0.11 ± 0.00 B | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Jia, B.; Xie, P.; Gao, Z.; Huang, Z.; He, S.; Zhu, H.; Zhang, J.; Cao, S. Characteristics of Spatiotemporal Distribution of Microbial Communities in the Riparian Zone of the Three Gorges Reservoir Area. Processes 2025, 13, 3541. https://doi.org/10.3390/pr13113541
Li Z, Jia B, Xie P, Gao Z, Huang Z, He S, Zhu H, Zhang J, Cao S. Characteristics of Spatiotemporal Distribution of Microbial Communities in the Riparian Zone of the Three Gorges Reservoir Area. Processes. 2025; 13(11):3541. https://doi.org/10.3390/pr13113541
Chicago/Turabian StyleLi, Zheng, Baojie Jia, Ping Xie, Zhuofan Gao, Zhuo Huang, Shufang He, Haiqin Zhu, Jinlong Zhang, and Shulong Cao. 2025. "Characteristics of Spatiotemporal Distribution of Microbial Communities in the Riparian Zone of the Three Gorges Reservoir Area" Processes 13, no. 11: 3541. https://doi.org/10.3390/pr13113541
APA StyleLi, Z., Jia, B., Xie, P., Gao, Z., Huang, Z., He, S., Zhu, H., Zhang, J., & Cao, S. (2025). Characteristics of Spatiotemporal Distribution of Microbial Communities in the Riparian Zone of the Three Gorges Reservoir Area. Processes, 13(11), 3541. https://doi.org/10.3390/pr13113541

