Optimisation of Storage Parameters for Walnuts Under Controlled Ozone and Temperature Conditions
Abstract
1. Introduction
2. Materials and Methods
3. Results
- Shell appearance. In all samples, the shell retained its integrity and natural colour, without mechanical damage, contamination, traces of mould, or pest damage.
- Kernel condition. The kernels had a uniform structure, were well formed, without signs of creases, spots, or surface defects. A slight natural shine indicated the high quality of the product.
- Smell and taste. The characteristic aroma of walnuts was preserved without foreign odours. The taste was rich and typical for a fresh ripe product. Signs of rancidity or mustiness were not detected.
- Fruit maturity. The kernels were easily separated from the shell, indicating physiological maturity. The internal partitions had a typical darkening characteristic of fully ripened fruits.
- Kernel consistency. The kernels were dense, but not excessively hard, without signs of excessive fragility or looseness. The internal structure remained uniform, confirming the suitability of the nuts for storage and processing.
4. Discussion
- -
- accelerate lipid oxidation (↑ peroxide/acid values, off-flavours);
- -
- alter colour/texture and some phytochemicals;
- -
- cause excessive mass loss or quality defects.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Calculation of Regression Coefficients for Describing the Quality Indicators of Walnuts Treated with Ozone (Almaty Region)
Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C y1 Mass fraction of moisture, % Number of replicates of experiments m = 1 m0 = 0 Regression coefficients (b) and their trust errors (e): b0 = 2.103333 b1 = −0.046667 b2 = −0.001556 b3 = 0.000667 b12 = 0.001333 b13 = −0.001333 b23 =−0.000044 e0 = 1.432355 e1 = 1.578606 e2 = 0.026310 e3 = 0.058364 e12 = 0.026779 e13 = 0.053558 e23 = 0.000893 Significant regression coefficients: b0 = 2.002500 e0 = 0.100422 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 1.97 2.00 1.65 2 0.50 60.00 25.00 1.95 2.00 2.69 3 1.00 30.00 25.00 1.99 2.00 0.63 4 0.50 30.00 25.00 2.03 2.00 1.35 5 1.00 60.00 10.00 2.00 2.00 0.13 6 0.50 60.00 10.00 2.01 2.00 0.37 7 1.00 30.00 10.00 2.04 2.00 1.84 8 0.50 30.00 10.00 2.03 2.00 1.35 ------------------------------------------------------ min 0.500 30.000 10.000 2.00 max 0.500 30.000 10.000 2.00 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y = 0.0044 s2ag = 0.0010 standard deviation sy = 0.0660 sag = 0.0315 number of degrees of freedom Ns2y = 2 Ns2ag = 7 Fisher criterion Fc = 4.39 Fcr = 4.74 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y2 Mass fraction of fat, % Number of replicates of experiments m = 1 m0= 0 Regression coefficients (b) and their trust errors (e): b0 = 58.037917 b1 = −0.295000 b2 = −0.003139 b3 = −0.004167 b12 = 0.003667 b13 = 0.006000 b23 = −0.000011 e0 = 31.468400 e1 = 34.681501 e2 = 0.578025 e3 = 1.282234 e12 = 0.588329 e13 = 1.176659 e23 = 0.019611 Significant regression coefficients: b0 = 57.796250 e0 = 2.206235 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 57.81 57.80 0.02 2 0.50 60.00 25.00 57.76 57.80 0.06 3 1.00 30.00 25.00 57.79 57.80 0.01 4 0.50 30.00 25.00 57.82 57.80 0.04 5 1.00 60.00 10.00 57.78 57.80 0.03 6 0.50 60.00 10.00 57.80 57.80 0.01 7 1.00 30.00 10.00 57.78 57.80 0.03 8 0.50 30.00 10.00 57.83 57.80 0.06 ------------------------------------------------------ min 0.500 30.000 10.000 57.80 max 0.500 30.000 10.000 57.80 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y= 2.1025 s2ag = 0.0005 standard deviation sy = 1.4500 sag = 0.0233 number of degrees of freedom Ns2y = 2 Ns2ag = 7 Fisher criterion Fc = 3885.81 Fcr = 4.74 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y3 Ash content, % Number of replicates of experiments m = 1 m0= 0 Regression coefficients (b) and their trust errors (e): b0 = 1.855000 b1 = 0.033333 b2 = 0.001111 b3 = 0.000000 b12 = −0.001333 b13 = 0.002667 b23 = −0.000044 e0 = 0.737880 e1 = 0.813221 e2 = 0.013554 e3 = 0.030066 e12 = 0.013795 e13 = 0.027591 e23 = 0.000460 Significant regression coefficients: b0 = 1.885000 e0 = 0.051732 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 1.88 1.89 0.27 2 0.50 60.00 25.00 1.86 1.89 1.34 3 1.00 30.00 25.00 1.91 1.89 1.31 4 0.50 30.00 25.00 1.89 1.89 0.26 5 1.00 60.00 10.00 1.87 1.89 0.80 6 0.50 60.00 10.00 1.89 1.89 0.26 7 1.00 30.00 10.00 1.90 1.89 0.79 8 0.50 30.00 10.00 1.88 1.89 0.27 ------------------------------------------------------ min 0.500 30.000 10.000 1.89 max 0.500 30.000 10.000 1.89 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y = 0.0012 s2ag = 0.0003 standard deviation sy = 0.0340 sag = 0.0160 number of degrees of freedom Ns2y = 2 Ns2ag = 7 Fisher criterion Fc = 4.50 Fcr = 4.74 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y4 Peroxide value, mmol ½O/kg Number of replicates of experiments m = 1 m0 = 0 Regression coefficients (b) and their trust errors (e): b0 = 22.948750 b1 = 4.895000 b2 = 0.150806 b3 = −0.454500 b12 = −0.259000 b13 = 0.398000 b23 = 0.000411 e0 = 10.417126 e1 = 11.480773 e2 = 0.191346 e3 = 0.424464 e12 = 0.194757 e13 = 0.389515 e23 = 0.006492 Significant regression coefficients: b0 = 26.296250 b2 = 0.110459 b3 = −0.509953 b12 = −0.195612 b13 = 0.496604 e0 = 2.870193 e2 = 0.106176 e3 = 0.254442 e12 = 0.125806 e13 = 0.313428 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 20.51 20.85 1.67 2 0.50 60.00 25.00 20.95 20.51 2.08 3 1.00 30.00 25.00 23.54 23.41 0.56 4 0.50 30.00 25.00 19.91 20.13 1.13 5 1.00 60.00 10.00 21.08 21.05 0.13 6 0.50 60.00 10.00 24.32 24.44 0.49 7 1.00 30.00 10.00 24.11 23.61 2.08 8 0.50 30.00 10.00 23.65 24.06 1.73 ------------------------------------------------------ min 0.500 30.000 25.000 20.13 max 0.500 60.000 10.000 24.44 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y= 0.2304 s2ag = 0.2700 standard deviation sy = 0.4800 sag = 0.5196 number of degrees of freedom Ns2y = 2 Ns2ag = 3 Fisher criterion Fc = 1.17 Fcr = 19.16 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y5 Acid number, mg KOH/kg Number of replicates of experiments m = 1 m0= 0 Regression coefficients (b) and their trust errors (e): b0 = 7.702083 b1 = −1.318333 b2 = −0.073083 b3 = −0.115833 b12 = 0.027000 b13 = −0.048667 b23 = 0.002633 e0 = 3.906422 e1 = 4.305290 e2 = 0.071755 e3 = 0.159174 e12 = 0.073034 e13 = 0.146068 e23 = 0.002434 Significant regression coefficients: b0 = 6.713333 b2 = −0.052833 b3 = −0.152333 b23 = 0.002633 e0 = 2.198614 e2 = 0.046351 e3 = 0.115477 e23 = 0.002434 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 3.49 3.69 5.59 2 0.50 60.00 25.00 3.88 3.69 5.03 3 1.00 30.00 25.00 2.83 3.30 16.43 4 0.50 30.00 25.00 3.76 3.30 12.37 5 1.00 60.00 10.00 3.52 3.60 2.27 6 0.50 60.00 10.00 3.68 3.60 2.17 7 1.00 30.00 10.00 4.18 4.40 5.14 8 0.50 30.00 10.00 4.61 4.40 4.66 ------------------------------------------------------ min 0.500 30.000 25.000 3.30 max 0.500 30.000 10.000 4.40 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y = 0.0324 s2ag = 0.1534 standard deviation sy = 0.1800 sag = 0.3917 number of degrees of freedom Ns2y = 2 Ns2ag = 4 Fisher criterion Fc = 4.74 Fcr = 19.25 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF= 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y6 iodine value, g/100 g Number of replicates of experiments m = 1 m0= 0 Regression coefficients (b) and their trust errors (e): b0 = 121.000000 b1 = −5.333333 b2 = −0.466667 b3 = 1.400000 b12 = 0.733333 b13 = −1.066667 b23 = −0.006667 e0 = 93.320083 e1 = 102.848588 e2 = 1.714143 e3 = 3.802487 e12 = 1.744701 e13 = 3.489401 e23 = 0.058157 Significant regression coefficients: b0 = 126.000000 e0 = 6.542628 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 130.00 126.00 3.08 2 0.50 60.00 25.00 124.00 126.00 1.61 3 1.00 30.00 25.00 127.00 126.00 0.79 4 0.50 30.00 25.00 132.00 126.00 4.55 5 1.00 60.00 10.00 131.00 126.00 3.82 6 0.50 60.00 10.00 117.00 126.00 7.69 7 1.00 30.00 10.00 125.00 126.00 0.80 8 0.50 30.00 10.00 122.00 126.00 3.28 ------------------------------------------------------ min 0.500 30.000 10.000 126.00 max 0.500 30.000 10.000 126.00 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y= 18.4900 s2ag = 25.7143 standard deviation sy = 4.3000 sag = 5.0709 number of degrees of freedom Ns2y = 2 Ns2ag = 7 Fisher criterion Fc = 1.39 Fcr = 19.35 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y7 lead, mg/kg Number of replicates of experiments m = 1 m0 = 0 Regression coefficients (b) and their trust errors (e): b0 = 0.016458 b1 = −0.003500 b2 = −0.000114 b3 = −0.000083 b12 = 0.000033 b13 = −0.000200 b23 = 0.000006 e0 = 0.006728 e1 = 0.007415 e2 = 0.000124 e3 = 0.000274 e12 = 0.000126 e13 = 0.000252 e23 = 0.000004 Significant regression coefficients: b0 = 0.013666 b2 = −0.000086 b13 = −0.000298 b23 = 0.000005 e0 = 0.001926 e2 = 0.000046 e13 = 0.000093 e23 = 0.000002 ----------------------------------------------------- N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 0.009 0.009 1.34 2 0.50 60.00 25.00 0.013 0.013 1.15 3 1.00 30.00 25.00 0.008 0.008 4.20 4 0.50 30.00 25.00 0.011 0.011 3.58 5 1.00 60.00 10.00 0.009 0.009 2.57 6 0.50 60.00 10.00 0.010 0.010 2.60 7 1.00 30.00 10.00 0.009 0.010 8.06 8 0.50 30.00 10.00 0.012 0.011 6.52 ------------------------------------------------------ min 1.000 30.000 25.000 0.008 max 0.500 60.000 25.000 0.013 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y = 0.0000 s2ag = 0.0000 standard deviation sy = 0.0003 sag = 0.0006 number of degrees of freedom Ns2y = 2 Ns2ag = 4 Fisher criterion Fc = 4.07 Fcr = 19.25 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y8 cadmium, mg/kg Number of replicates of experiments m = 1 m0 = 0 Regression coefficients (b) and their trust errors (e): b0 = −0.004583 b1 = 0.008333 b2 = 0.000061 b3 = 0.000033 b12 = −0.000133 b13 = −0.000133 b23 = 0.000002 e0 = 0.000456 e1 = 0.000502 e2 = 0.000008 e3 = 0.000019 e12 = 0.000009 e13 = 0.000017 e23 = 0.000000 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 0.000 0.000 2 0.50 60.00 25.00 0.002 0.002 12.50 3 1.00 30.00 25.00 0.001 0.001 25.00 4 0.50 30.00 25.00 0.000 0.000 5 1.00 60.00 10.00 0.000 −0.000 6 0.50 60.00 10.00 0.000 0.000 7 1.00 30.00 10.00 0.001 0.001 25.00 8 0.50 30.00 10.00 0.000 −0.000 ------------------------------------------------------ min 1.000 60.000 10.000 −0.000 max 0.500 60.000 25.000 0.002 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y = 0.0000 s2ag = 0.0000 standard deviation sy = 0.0000 sag = 0.0007 number of degrees of freedom Ns2y = 2 Ns2ag = 1 Fisher criterion Fc = 1133.79 Fcr = 18.51 Calculation of regression coefficients by the least squares method according to the linear plan taking into account interfactorial interactions Number of experiments N = 8, coefficients KK = 7, factors KF = 3 X1-Co, mg/m3; x2-tau, min; x3-t, °C Y9 yeast, CFU/g Number of replicates of experiments m = 1 m0 = 0 Regression coefficients (b) and their trust errors (e): b0 = 4.333333 b1 = −0.000000 b2 = −0.055556 b3 = −0.133333 b12 = 0.000000 b13 = 0.000000 b23 = 0.002222 e0 = 1.128522 e1 = 1.243750 e2 = 0.020729 e3 = 0.045984 e12 = 0.021099 e13 = 0.042197 e23 = 0.000703 Significant regression coefficients: b0 = 4.333333 b2 = −0.055556 b3 = −0.133333 b23 = 0.002222 e0 = 0.635155 e2 = 0.013390 e3 = 0.033360 e23 = 0.000703 ------------------------------------------------------ N X1 X2 X3 Yav Yc styp ------------------------------------------------------ 1 1.00 60.00 25.00 1.000 1.000 0.00 2 0.50 60.00 25.00 1.000 1.000 0.00 3 1.00 30.00 25.00 1.000 1.000 0.00 4 0.50 30.00 25.00 1.000 1.000 0.00 5 1.00 60.00 10.00 1.000 1.000 0.00 6 0.50 60.00 10.00 1.000 1.000 0.00 7 1.00 30.00 10.00 2.000 2.000 0.00 8 0.50 30.00 10.00 2.000 2.000 0.00 ------------------------------------------------------ min 0.500 30.029 25.000 1.000 max 0.500 30.000 10.000 2.000 Statistical indicators: Student’s criterion tcr = 4.304 variance of error of experience and inadequacy s2y = 0.0027 s2ag = 0.0000 standard deviation sy = 0.0520 sag = 0.0000 number of degrees of freedom Ns2y = 2 Ns2ag = 4 Fisher criterion Fc = 8221.86 Fcr = 0 |
References
- Raja, G.; Shaker, I.A.; Inampudi, M. Nutritional analysis of nuts extract of Juglans regia. Int. J. Bioassays 2012, 1, 68. [Google Scholar] [CrossRef]
- Das, N.; Tandukar, P.; Niraula, M.; Gautam, D.R.; Pathak, I. Phytochemical Analysis and Biological Activities of Different Extracts of Walnut (Juglans regia Linn.) Kernels. J. Nepal Chem. Soc. 2024, 44, 78–89. [Google Scholar] [CrossRef]
- Bechelova, A. Macro and Micronutrients Contents in Walnut Leaves (Juglans regia L.) (Southern Kyrgyzstan). Bull. Sci. Pract. 2023, 1, 81–88. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, M.; Sharma, M. A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.). Proc. Indian Natl. Sci. Acad. 2022, 88, 601–616. [Google Scholar] [CrossRef]
- Elouafy, Y.; El Yadini, A.; El Moudden, H.; Harhar, H.; Alshahrani, M.M.; Awadh, A.A.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A.; Tabyaoui, M. Influence of the Extraction Method on the Quality and Chemical Composition of Walnut (Juglans regia L.) Oil. Molecules 2022, 27, 7681. [Google Scholar] [CrossRef] [PubMed]
- Antos, P.; Piechowiak, T.; Balawejder, M.; Kowalczyk, K.; Tereszkiewicz, K. Impact of gaseous ozone treatment of fish carcasses (Gadus morhua) on the microbiological load and their quality. PLoS ONE 2025, 20, e0327866. [Google Scholar] [CrossRef]
- Leontieff, D.A.; Ikehata, K.; Inanaga, Y.; Furukawa, S. Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications. Processes 2025, 13, 2331. [Google Scholar] [CrossRef]
- Seyedabadi, E.; Aran, M.; Moghaddam, R.M. Application of ozone against the larvae of Plodia interpunctella (Hübner) and its impacts on the organoleptic properties of walnuts. J. Food Prot. 2021, 84, 147–151. [Google Scholar] [CrossRef]
- Ali, E.M.; Abdallah, B.M. The potential use of ozone as an antifungal and antiaflatoxigenic agent in nuts and its effect on nutritional quality. Braz. J. Biol. 2022, 84, e263814. [Google Scholar] [CrossRef]
- Ferreira, W.F.D.S.; de Alencar, E.R.; Blum, L.E.B.; Ferreira, M.D.A.; Mendonca, M.A.; Racanicci, A.M.C.; Urruchi, W.M.I. Ozonation of Brazil nuts in aqueous media at different pH levels: Ozone decomposition, Aspergillus flavus inactivation, and effects on nut color and crude oil lipid profile. Ozone Sci. Eng. 2021, 43, 351–362. [Google Scholar] [CrossRef]
- Leeuwen, J.; van Pandiselvam, R.; Jeevarathinam, G. Cost Estimation for the Preservation of Selected Food/Crop Products with Ozone. J. Food Process Eng. 2024, 47, e14772. [Google Scholar] [CrossRef]
- Dhami, J.S.; Jyakhwo, S.; Thapa, B.B.; Tyata, R.B. Ozone Generation Via DBD Plasma for Water and Curd Treatment. J. Sci. Eng. 2025, 12, 57–61. [Google Scholar] [CrossRef]
- Alkhair, A.; Tveritnikova, I.S.; Kirsh, I.A.; Filinskaya, Y.A.; Melesse, I.; Bannikova, O.A. Optimizing pistachio packaging to extend shelf life and ensure quality. Food Process. Ind. 2024, 2, 44–48. [Google Scholar] [CrossRef]
- Ndlovu, N. Nuts and diabetes management: Nutritional and metabolic benefits. Bioact. Compd. Health Dis. 2025, 8, 318–333. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, W.; Yang, D.; He, X.; Qu, Z.; Jing, W.; Mei, Y.; Huang, H.; Su, B.; Zhuang, Y. Optimal Design and Tests of a Pulsating Roll-Cleaning Device for Tiger Nuts. Agriculture 2024, 14, 1673. [Google Scholar] [CrossRef]
- Brusa, V.; Restovich, V.; Cap, M.; Chiapparoli, V.; Grigioni, G.; Giannuzzi, L.; Vaudagna, S.; Leotta, G. Effect of ozone application on bovine carcasses in abattoir cold chambers. PLoS ONE 2025, 20, e0321146. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, J.; Lv, H.; Zeng, X.; Ling, Z.; Ding, L.; Jin, C. Advances in Ozone Technology for Environmental, Energy, Food and Medical Applications. Processes 2025, 13, 1126. [Google Scholar] [CrossRef]
- Paravathi, C.; Lisha, S.; Harshitha, S.; Archana, S. Sustainable Food Preservation Using Integrated Methods. Int. J. Sci. Res. Eng. Manag. 2025, 9, 1–7. [Google Scholar] [CrossRef]
- Mohammad, A.A.; Salem, S.H.; Amer, H.M.; Hussein, M.S. Ozone as a postharvest treatment to maintain the quality characteristics of fresh-cut plants. J. Food Meas. Charact. 2025, 19, 4325–4336. [Google Scholar] [CrossRef]
- Anchang, M.M.; Imamou Hassani, M.; Okoyeuzu, C.F.; Karimidastjerd, A.; Bono, G.; Okpala, C.O.R. Ozone treatment and quality control of shrimp. In Postharvest Technologies and Quality Control of Shrimp; Elsevier: Amsterdam, The Netherlands, 2025; pp. 251–275. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Rathnakumar, K.; Nickhil, C.; Charles, A.P.R.; Falsafi, S.R.; Rostamabadi, H.; Sofia, A.; Aydar, A.Y.; Priya, V.; Malik, S.; et al. Ozone-Based Oxidation Treatment to Enhance Food Drying Rate and Quality: Mechanisms, Current Knowledge, and Future Outlook. Food Bioprocess Technol. 2025, 18, 5038–5057. [Google Scholar] [CrossRef]
- Sverhun, Z.G.; Horiuk, Y.V. Assessment of bactericidal action of aqueos ozone to disinfected the surface of eggs. Sci. Messenger LNU Vet. Med. Biotechnol. 2025, 27, 89–95. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Han, Y.; Zong, W.; Ge, Z.; Wei, X. Alternaria mycotoxin degradation and quality evaluation of orange juice by ozone treatment. J. Food Process Eng. 2024, 47, e14703. [Google Scholar] [CrossRef]
- GOST 32874-2014; Walnuts. Specifications. (UNECE Standard DDP-01:2013, MOD). Standartinform: Moscow, Russia, 2015; pp. 1–15. Available online: https://internet-law.ru/gosts/gost/58311/ (accessed on 15 March 2025).
- GOST 29033-91; Grain and Its Processed Products. Method for Determination of Fat. IPC, Publishing House of standards: Moscow, Russia, 2004; pp. 1–6. Available online: https://files.stroyinf.ru/Data2/1/4294825/4294825650.pdf (accessed on 21 March 2025).
- GOST 25555.4-91; Processed Products of Fruits and Vegetables. Methods for Determination of Ash and Alkalinity of Total and Water-Soluble Ash. Standartinform: Moscow, Russia, 2011; pp. 1–6. Available online: https://internet-law.ru/gosts/gost/10506/ (accessed on 3 April 2025).
- GOST 26593-95; Vegetable Oils. Method for Measuring Peroxide Value. Standartinform: Moscow, Russia, 1999; pp. 1–5. Available online: https://files.stroyinf.ru/Data2/1/4294827/4294827842.pdf (accessed on 2 April 2025).
- GOST 31933-2012; Vegetable Oils. Methods for Determining Acid Value. Standartinform: Moscow, Russia, 2019; pp. 1–14. Available online: https://files.stroyinf.ru/Data2/1/4293781/4293781264.pdf (accessed on 2 April 2025).
- GOST ISO 3961-2020; Animal and Vegetable Fats and Oils. Determination of Iodine Value. Standartinform: Moscow, Russia, 2020; pp. 1–18. Available online: https://internet-law.ru/gosts/gost/73886/ (accessed on 1 April 2025).
- GOST 30178-96; Raw Materials and Food Products. Atomic Absorption Method for Determining Toxic Elements. Standartinform: Moscow, Russia, 2010; pp. 1–10. Available online: https://internet-law.ru/gosts/gost/9123 (accessed on 22 March 2025).
- GOST 10444.12-2013; Microbiology of Food Products and Animal Feed. Methods for Detecting and Counting the Amount of Yeast and Mold Fungi. Standartinform: Moscow, Russia, 2014; pp. 1–12. Available online: https://internet-law.ru/gosts/gost/55923/ (accessed on 1 April 2025).
- Ostapchuk, N.V.; Kaminsky, V.D.; Stankevich, G.N.; Chuchuy, V.P. Mathematical modeling of food production processes. In Collection of Problems: Textbook; Vishcha Shkola: Kyiv, Ukraine, 1992; p. 175. [Google Scholar]
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Standard: Geneva, Switzerland, 2020; pp. 1–9. Available online: https://cdn.standards.iteh.ai/samples/75594/90e8488f0492461cb04d4ac36a77297e/ISO-660-2020.pdf (accessed on 6 September 2025).
- Çelebi, Y.; Koç, G.Ç.; Süfer, Ö.; Tekgül Barut, Y.; Şahin Ercan, S.; Yüksel, A.N.; Sezer, S.; Ramniwas, S.; Rastogi, S.; Chandra Khanashyam, A.; et al. Impact of Ozone Treatment on Lipid Oxidation in Foods: A Critical Review. Ozone Sci. Eng. 2024, 46, 430–454. [Google Scholar] [CrossRef]
- Anjali, K.U.; Reshma, C.; Sruthi, N.U.; Pandiselvam, R.; Kothakota, A.; Kumar, M.; Siliveru, K.; Marszałek, K.; Mousavi Khaneghah, A. Influence of ozone treatment on functional and rheological characteristics of food products: An updated review. Crit. Rev. Food Sci. Nutr. 2022, 64, 3687–3701. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.; Barbara, R. Inactivation of microbes by ozone in the food industry: A review. Afr. J. Food Sci. 2021, 15, 113–120. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Subhashini, S.; Banuu Priya, E.P.; Kothakota, A.; Ramesh, S.V.; Shahir, S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2018, 41, 17–34. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Singh, A.; Agriopoulou, S.; Sachadyn-Król, M.; Aslam, R.; Gonçalves Lima, C.M.; Khanashyam, A.C.; Kothakota, A.; Atakan, O.; Kumar, M.; et al. A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends Food Sci. Technol. 2022, 127, 74–86. [Google Scholar] [CrossRef]
- İbanoğlu, Ş. Applications of ozonation in the food industry. In Non-Thermal Food Processing Operations; Elsevier: Amsterdam, The Netherlands, 2023; pp. 55–91. [Google Scholar] [CrossRef]
- Meneses-Espinosa, E.; Gálvez-López, D.; Rosas-Quijano, R.; Adriano-Anaya, L.; Vázquez-Ovando, A. Advantages and Disadvantages of Using Emerging Technologies to Increase Postharvest Life of Fruits and Vegetables. Food Rev. Int. 2023, 40, 1348–1373. [Google Scholar] [CrossRef]
- Vijay Rakesh Reddy, S.; Sudhakar Rao, D.V.; Sharma, R.R.; Preethi, P.; Pandiselvam, R. Role of Ozone in Post-Harvest Disinfection and Processing of Horticultural Crops: A Review. Ozone Sci. Eng. 2021, 44, 127–146. [Google Scholar] [CrossRef]
- De Oliveira, J.M.; de Alencar, E.R.; Blum, L.E.B.; de Souza Ferreira, W.F.; Botelho, S.d.C.C.; Racanicci, A.M.C.; dos Santos Leandro, E.; Mendonça, M.A.; Moscon, E.S.; dos Santos Bizerra, L.V.A.; et al. Ozonation of Brazil nuts: Decomposition kinetics, control of Aspergillus flavus and the effect on color and on raw oil quality. LWT 2020, 123, 109106. [Google Scholar] [CrossRef]
- Baia, G.M.; Freitas-Silva, O.; Junior, M.F. Understanding the Role of Chlorine and Ozone to Control Postharvest Diseases in Fruit and Vegetables: A Review. Curr. Nutr. Food Sci. 2020, 16, 455–461. [Google Scholar] [CrossRef]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-G.; Yousef, A.E.; Dave, S. Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef] [PubMed]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone application in different industries: A review of recent developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef] [PubMed]
- Epelle, E.I.; Emmerson, A.; Nekrasova, M.; Macfarlane, A.; Cusack, M.; Burns, A.; Mackay, W.; Yaseen, M. Microbial Inactivation: Gaseous or Aqueous Ozonation? Ind. Eng. Chem. Res. 2022, 61, 9600–9610. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef]
- Atakan, O.; Caner, C. Evaluation of different ozonation on aflatoxin degradation and physicochemical characteristics of hazelnuts. J. Food Process. Preserv. 2021, 45, e15276. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2017, 58, 2176–2201. [Google Scholar] [CrossRef]
Indicators | Coding | Factors and Their Meanings | ||
---|---|---|---|---|
Ozone Concentration (x1), mg/m3 | Processing Time (x2), min | Storage Temperature (x3), °C | ||
Upper level | + | 1.0 | 60.0 | 25 |
Zero level | 0 | 0.75 | 45.0 | 17.5 |
Lower level | − | 0.5 | 30.0 | 10 |
Variation interval | 0.25 | 15.0 | 7.5 |
No. | Factors | Quality Indicators of Walnuts After Storage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co mg/m3 | τ, min | t, °C | y1, % | y2, % | y3, % | y4, mmol ½O/kg | y5, mg KOH/kg | y6, g/100 g | y7, mg/kg | y8, mg/kg | y9, CFU/g | y10, CFU/g | |
Control sample 1 | 0 | 0 | 10 | 3.24 | 47.25 | 1.47 | 13.75 | 29.78 | 107 | 0.015 | 0.002 | 3 | 0 |
Control sample 2 | 0 | 0 | 25 | 3.22 | 47.47 | 1.42 | 13.58 | 2.41 | 105 | 0.019 | 0.003 | 5 | 0 |
1 | 1.0 | 60 | 25 | 1.97 | 57.81 | 1.88 | 20.51 | 3.49 | 130 | 0.009 | 0 | 1 | 0 |
2 | 0.5 | 60 | 25 | 1.95 | 57.76 | 1.86 | 20.95 | 3.88 | 124 | 0.013 | 0.002 | 1 | 0 |
3 | 1.0 | 30 | 25 | 1.99 | 57.79 | 1.91 | 23.54 | 2.83 | 127 | 0.008 | 0.001 | 1 | 0 |
4 | 0.5 | 30 | 25 | 2.03 | 57.82 | 1.89 | 19.91 | 3.76 | 132 | 0.011 | 0 | 1 | 0 |
5 | 1.0 | 60 | 10 | 2.00 | 57.78 | 1.87 | 21.08 | 3.52 | 131 | 0.009 | 0 | 1 | 0 |
6 | 0.5 | 60 | 10 | 2.01 | 57.80 | 1.89 | 24.32 | 3.68 | 117 | 0.010 | 0 | 1 | 0 |
7 | 1.0 | 30 | 10 | 2.04 | 57.78 | 1.90 | 24.11 | 4.18 | 125 | 0.009 | 0.001 | 2 | 0 |
8 | 0.5 | 30 | 10 | 2.03 | 57.83 | 1.88 | 23.65 | 4.61 | 122 | 0.012 | 0 | 2 | 0 |
Regression Equations in Natural Variables | Standard Deviation | Fisher’s Criterion | ||
---|---|---|---|---|
Experimental (Se) | Inadequacy (Sinad) | Calculated (Fc) | Critical (Fcr) | |
y1 = 2.0025 | 0.0660 | 0.0315 | 4.39 | 4.74 |
y2 = 57.79625 | 1.4500 | 0.0233 | 3885.81 | 4.74 |
y3 = 1.885 | 0.0340 | 0.0160 | 4.50 | 4.74 |
y4 = 26.29625 + 0.110459τ − 0.509953t − 0.195612Coτ + 0.496604Cot | 0.4800 | 0.5196 | 1.17 | 19.16 |
y5 = 6.713333 − 0.052833τ − 0.152333t + 0.002633τt | 0.1800 | 0.3917 | 4.74 | 19.25 |
y6 = 126.00 | 0.3000 | 5.0709 | 1.39 | 19.35 |
y7 = 0.013666 − 0.000086τ − 0.000298Cot + 0.000005τt | 0.0003 | 0.0006 | 4.07 | 19.25 |
y8 = −0.004583 + 0.008333Co + 0.000061τ + 0.000033t − 0.000133Coτ − 0.000133Cot + 0.000002τt | 0.0000 | 0.0007 | 1133.79 | 18.51 |
y9 = 4.333333 − 0.055556τ − 0.133333t + 0.002222τt | 0.0520 | 0.0000 | 1.86 | 0 |
y10 = 0 | 0 | 0 | 0 | 0 |
Indicators | min | opt | max | ||
---|---|---|---|---|---|
y1—mass fraction of moisture, % | 1.95 | ≤ | 2.00 | ≤ | 2.04 |
y2—mass fraction of fat, % | 57.76 | ≤ | 57.80 | ≤ | 57.83 |
y3—ash content, % | 1.86 | ≤ | 1.89 | ≤ | 1.91 |
y4—peroxide value, mmol ½O/kg | 19.91 | ≤ | 24.06 | ≤ | 24.32 |
y5—acid number, mg KOH/kg | 2.83 | ≤ | 4.40 | ≤ | 4.61 |
y6—iodine value, g/100 g | 117 | ≤ | 126 | ≤ | 132 |
y7—lead, mg/kg | 0.008 | ≤ | 0.011 | ≤ | 0.013 |
y8—cadmium, mg/kg | 0 | ≤ | 0.001 | ≤ | 0.002 |
y9—yeast, CFU/g | 1 | ≤ | 2 | ≤ | 2 |
y10—mould, CFU/g | 0 | ≤ | 0 | ≤ | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakiyayeva, M.; Iztayev, A.; Umirzakova, G.; Dikhanbayeva, F.; Maliktayeva, P. Optimisation of Storage Parameters for Walnuts Under Controlled Ozone and Temperature Conditions. Processes 2025, 13, 3387. https://doi.org/10.3390/pr13113387
Yakiyayeva M, Iztayev A, Umirzakova G, Dikhanbayeva F, Maliktayeva P. Optimisation of Storage Parameters for Walnuts Under Controlled Ozone and Temperature Conditions. Processes. 2025; 13(11):3387. https://doi.org/10.3390/pr13113387
Chicago/Turabian StyleYakiyayeva, Madina, Auyelbek Iztayev, Gulzhanat Umirzakova, Fatima Dikhanbayeva, and Pernekul Maliktayeva. 2025. "Optimisation of Storage Parameters for Walnuts Under Controlled Ozone and Temperature Conditions" Processes 13, no. 11: 3387. https://doi.org/10.3390/pr13113387
APA StyleYakiyayeva, M., Iztayev, A., Umirzakova, G., Dikhanbayeva, F., & Maliktayeva, P. (2025). Optimisation of Storage Parameters for Walnuts Under Controlled Ozone and Temperature Conditions. Processes, 13(11), 3387. https://doi.org/10.3390/pr13113387