Prediction of Wax Deposition Rate of Waxy Crude Oil Based on Improved Elman Neural Network
Abstract
1. Introduction
2. Basic Theory of Elman Neural Network and Arithmetic Optimization Algorithm
2.1. Elman Neural Network (ENN)
2.2. Arithmetic Optimization Algorithm (AOA)
- (1)
- Initialization phase
- (2)
- Exploration phase
- (3)
- Exploitation phase
3. The Steps for Predicting Wax Deposition Rate Using Elman Neural Network and Improved Elman Neural Network
3.1. The Prediction Steps of Elman Neural Network
3.2. The Prediction Steps of Improved Elman Neural Network
4. Comparison and Accuracy Analysis of Model Prediction Results
4.1. Comparison of Prediction Results for Wax Deposition Rate (Example 1)
4.2. Comparison of Prediction Results for Wax Deposition Rate (Example 2)
4.3. Comparison of Prediction Results for Wax Deposition Rate (Example 3)
5. Conclusions
- There are many factors affecting the wax deposition rate, and there is a complex nonlinear relationship between each factor and the wax deposition rate. The AOA-ENN model for predicting wax deposition rate was established by introducing the arithmetic optimization algorithm to improve the Elman neural network. The results showed that the prediction results of the AOA-ENN model are in good agreement with the measurement results, and the prediction accuracy is high. This research method provides a new idea for the accurate prediction of the wax deposition rate of the pipe wall.
- The prediction results of Example 1, Example 2, and Example 3 showed that the average relative errors of the AOA-ENN model are significantly lower than those of the traditional ENN model. Therefore, it is definitely feasible to use the AOA-ENN model to predict the wax deposition rate. For each improved model, the AOA-ENN model has the highest prediction accuracy, followed by the PSO-ENN model and the GA-ENN model.
- The arithmetic optimization algorithm does not need to perform complex mathematical operations on the objective function, and directly performs arithmetic operations on the function, which greatly simplifies the solution process of the optimization problem, and has the advantages of high efficiency and high precision.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
y(t) | output vector |
x(t) | output vector of the hidden layer |
u(t) | input vector |
xc(t) | output vector of the context layer |
w1 | connection weight value from the input layer to the hidden layer |
w2 | connection weight value from the context layer to the hidden layer |
w3 | connection weight value from the hidden layer to the output layer |
g(.) | transfer functions of the output layer |
f(.) | transfer functions of the hidden layer |
N | population quantity |
n | the dimension of exploration space |
xi,j | the position of the i-th solution in the j-th dimensional space |
MOA(C_iter) | specific function value at the t-th iteration |
MOA | an adaptive coefficient |
C_iter | current number of iterations |
M_iter | maximum number of iterations |
max | maximum value of the corresponding function values of the math optimizer accelerated |
min | minimum value of the corresponding function values of the math optimizer accelerated |
r1, r2, r3 | a random number between [0, 1] |
xi(C_iter + 1) | the i-th solution of the next iteration |
xi,j(C_iter + 1) | the j-th dimension position of the i-th solution for the next iteration |
best(xj) | the j-th dimension position of the best solution during the iteration process |
ε | a small integer number |
UBj | upper bound value of the j-th dimension position |
LBj | lower bound value of the j-th dimension position |
μ | control parameter to adjust the exploration process |
MOP | math optimizer probability |
MOP(C_iter) | function value at the t-th iteration |
α | a sensitive parameter |
dfi | model output value of the i-th sample |
dvi | actual value of the i-th sample |
m | the number of input layer nodes |
l | the number of output layer nodes |
a | an integer between 1 and 10 |
References
- Liu, Y.; Pan, C.L.; Cheng, Q.L.; Wang, B.; Wang, X.X.; Gan, Y.F. Wax deposition rate model for heat and mass coupling of piped waxy crude oil based on non-equilibrium thermodynamics. J. Dispers. Sci. Technol. 2018, 39, 259–269. [Google Scholar] [CrossRef]
- Mehrotra, A.K.; Bhat, N.V. Modeling the effect of shear stress on deposition from “waxy” mixtures under laminar flow with heat transfer. Energy Fuels 2007, 21, 1277–1286. [Google Scholar] [CrossRef]
- Oyekunle, L.; Adeyanju, O. Thermodynamic Prediction of Paraffin Wax Precipitation in Crude Oil Pipelines. Pet. Sci. Technol. 2011, 29, 208–217. [Google Scholar] [CrossRef]
- Wang, W.D.; Huang, Q.Y. Prediction for wax deposition in oil pipelines validated by field pigging. J. Energy Inst. 2014, 87, 196–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, J.; Ren, Y.F.; Wang, P.Y. Effect of Emulsion Characteristics on Wax Deposition from Water-in-Waxy Crude Oil Emulsions under Static Cooling Conditions. Energy Fuels 2010, 24, 1146–1155. [Google Scholar] [CrossRef]
- Soedarmo, A.A.; Nagu, D.; Cem, S. Microscopic Study of Wax Deposition: Mass Transfer Boundary Layer and Deposit Morphology. Energy Fuels 2016, 30, 2674–2686. [Google Scholar] [CrossRef]
- Seyfaee, A.; Lashkarbolooki, M.; Esmaeilzadeh, F.; Mowla, D. Experimental Study of Oil Deposition Through a Flow Loop. J. Dispers. Sci. Technol. 2011, 32, 312–319. [Google Scholar] [CrossRef]
- Zhu, H.R.; Li, C.X.; Yang, F.; Liu, H.Y.; Liu, D.H.; Sun, G.Y.; Yao, B.; Liu, G.; Zhao, Y.S. Effect of Thermal Treatment Temperature on the Flowability and Wax Deposition Characteristics of Changqing Waxy Crude Oil. Energy Fuels 2018, 32, 10605–10615. [Google Scholar] [CrossRef]
- Quan, Q.; Gong, J.; Wang, W.; Wang, P.Y. The Influence of Operating Temperatures on Wax Deposition During Cold Flow and Hot Flow of Crude Oil. Pet. Sci. Technol. 2015, 33, 272–277. [Google Scholar] [CrossRef]
- Chi, Y.D.; Daraboina, N.; Sarica, C. Investigation of Inhibitors Efficacy in Wax Deposition Mitigation Using a Laboratory Scale Flow Loop. AIChE J. 2016, 62, 4131–4139. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Seyfaee, A.; Esmaeilzadeh, F.; Mowla, D. Experimental Investigation of Wax Deposition in Kermanshah Crude Oil through a Monitored Flow Loop Apparatus. Energy Fuels 2010, 24, 1234–1241. [Google Scholar] [CrossRef]
- Tinsley, J.F.; Prud’Homme, R.K. Deposition apparatus to study the effects of polymers and asphaltenes upon wax deposition. J. Petrol. Sci. Eng. 2010, 72, 166–174. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Li, Y.X.; Zhang, J.J. Unified wax deposition model. Acta Petrol. Sin. 2008, 29, 459–462. [Google Scholar] [CrossRef]
- Peng, Y. Study on the Prediction Model of Wax Deposition for Waxy Crude Oil in Pipeline. Ph.D. Thesis, Southwest Petroleum University, Chengdu, China, 2016. [Google Scholar]
- Singh, P.; Venkatesan, R.; Fogler, H.S.; Nagarajan, N. Formation and Aging of Incipient Thin Film Wax Oil Gels. AIChE J. 2000, 46, 1059–1074. [Google Scholar] [CrossRef]
- Huang, Z.Y. Application of the Fundamentals of Heat and Mass Transfer to the Investigation of Wax Deposition in Subsea Pipelines. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2011. Available online: http://hdl.handle.net/2027.42/89634 (accessed on 15 September 2025).
- Farimanii, S.K.; Sefti, M.V.; Masoudi, S. Wax deposition modeling in oil pipelines combined with the wax precipitation kinetics. Petrol. Res. 2014, 24, 89–99. [Google Scholar] [CrossRef]
- Obanijesu, E.O.; Omidiora, E.O. Artificial Neural Network’s Prediction of Wax Deposition Potential of Nigerian Crude Oil for Pipeline Safety. Petrol. Sci. Technol. 2008, 26, 1977–1991. [Google Scholar] [CrossRef]
- Xie, Y.; Xing, Y. A Prediction Method for the Wax Deposition Rate Based on a Radial Basis Function Neural Network. Petroleum 2017, 3, 237–241. [Google Scholar] [CrossRef]
- Chu, Z.Q.; Sasanipour, J.; Saeedi, M.; Baghban, A.; Mansoori, H. Modeling of wax deposition produced in the pipelines using PSO-ANFIS approach. Petrol. Sci. Technol. 2017, 35, 1974–1981. [Google Scholar] [CrossRef]
- Dehaghani, A.H.S. An intelligent model for predicting wax deposition thickness during turbulent flow of oil. Petrol. Sci. Technol. 2017, 35, 1706–1711. [Google Scholar] [CrossRef]
- Eghtedaei, R.; Sasanipour, J.; Zarrabi, H.; Palizian, M.; Baghban, A. Estimation of wax deposition in the oil production units using RBF-ANN strategy. Petrol. Sci. Technol. 2017, 35, 1737–1742. [Google Scholar] [CrossRef]
- Jalalnezhad, M.J.; Kamali, V. Development of an intelligent model for wax deposition in oil pipeline. J. Pet. Explor. Prod. Technol. 2016, 6, 129–133. [Google Scholar] [CrossRef]
- Amar, M.N.; Ghahfarokhi, A.J.; Ng, C.S.W. Predicting wax deposition using robust machine learning techniques. Petroleum 2022, 8, 167–173. [Google Scholar] [CrossRef]
- Ramsheh, B.A.; Zabihi, R.; Sarapardeh, A.H. Modeling wax deposition of crude oils using cascade forward and generalized regression neural networks: Application to crude oil production. Geoenergy Sci. Eng. 2023, 224, 211613. [Google Scholar] [CrossRef]
- Liang, Y.F.; Xu, J.N.; Wu, M. Elman neural network based on particle swarm optimization for prediction of GPS rapid clock bias. J. Navig. Univ. Eng. 2022, 34, 41–47. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Tao, R.; Zhou, H.L.; Meng, Z.; Yang, X.M. Optimization Design of Holding Poles Based on the Response Surface Methodology and the Improved Arithmetic Optimization Algorithm. Appl. Math. Mech. 2022, 43, 1113–1122. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, J.D.; Liu, Y.F.; Zhang, G. Modified ARIMA prediction model based on Elman neural network. J. Shanghai Marit. Univ. 2023, 44, 57–61. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhao, L.H. Prediction of Loess Landslides Deformation Using Elman Neural Network Model Based on Genetic Algorithm and Particle Swarm Optimization. J. Geod. Geodyn. 2023, 43, 679–684. [Google Scholar] [CrossRef]
- Lan, Z.X.; He, Q. Multi-strategy fusion arithmetic optimization algorithm and its application of project optimization. Appl. Res. Comput. 2022, 39, 758–763. [Google Scholar] [CrossRef]
- Zheng, T.T.; Liu, S.; Ye, X. Arithmetic optimization algorithm based on adaptive t-distribution and improved dynamic boundary strategy. Appl. Res. Comput. 2022, 39, 1410–1414. [Google Scholar] [CrossRef]
- Zhang, Y. Research on Wax Deposition Prediction Algorithm for Waxy Crude Oil Pipeline Based on Machine Learning. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2019. [Google Scholar] [CrossRef]
- Wang, X.L. The Wax Deposition Phenomena Prediction of Huachi Oil Pipelines. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2010. [Google Scholar] [CrossRef]
- Zheng, W.L. Study on Wax Deposition Model for Deep-Water High-Viscosity and High-Condensation Crude Oil Pipelines. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2018. [Google Scholar]
Num | Oil Temperature /°C | Wall Temperature /°C | Flow Velocity /(m·s−1) | Wall Shear Stress /Pa | Viscosity /(Pa·s) | Solubility Coefficient of Wax Molecules /(10−3·°C−1) | Temperature Gradient /(°C·mm−1) | Wax Deposition Rate /(g·m−2·h−1) |
---|---|---|---|---|---|---|---|---|
1 | 48 | 40 | 0.472 | 13.86 | 0.0441 | 7.56 | 1.333 | 45.453 |
2 | 40 | 35 | 0.472 | 54.37 | 0.1729 | 9.24 | 0.833 | 34.232 |
3 | 48 | 40 | 0.781 | 22.38 | 0.043 | 7.56 | 1.333 | 47.555 |
4 | 45 | 40 | 1.248 | 64.9 | 0.078 | 8.19 | 0.833 | 26.001 |
5 | 40 | 35 | 0.781 | 109.72 | 0.2107 | 9.24 | 0.833 | 74.458 |
Number | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 0.11513 | 0.40986 | 0.56219 | 0.27809 | 0.05747 | 0.33541 | 0.32644 | 0.09302 | 0.06111 | 0.06724 |
Num | Experimental Value /(g·m−2·h−1) | ENN Model | AOA-ENN Model | PSO-ENN Model | GA-ENN Model | ||||
---|---|---|---|---|---|---|---|---|---|
Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | ||
1 | 45.453 | 69.9655 | 53.9293 | 46.1652 | 1.5669 | 46.8051 | 2.9747 | 46.4183 | 2.1237 |
2 | 34.232 | 28.8223 | 15.8030 | 33.2468 | 2.8780 | 32.8834 | 3.9396 | 36.6218 | 6.9812 |
3 | 47.555 | 50.6023 | 6.4079 | 46.9022 | 1.3727 | 47.6237 | 0.1445 | 50.5676 | 6.3350 |
4 | 26.001 | 24.9214 | 4.1521 | 25.3465 | 2.5172 | 24.9311 | 4.1148 | 25.076 | 3.5576 |
5 | 74.458 | 85.5257 | 14.8644 | 71.1816 | 4.4003 | 79.7337 | 7.0855 | 70.4778 | 5.3456 |
Model | Average Relative Error/% | Root Mean Square Error |
---|---|---|
ENN model | 19.0313 | 12.3537 |
AOA-ENN model | 2.5470 | 1.6166 |
PSO-ENN model | 3.6518 | 2.5546 |
GA-ENN model | 4.8686 | 2.5462 |
Num | Oil Temperature /°C | Wall Temperature /°C | Viscosity /(mPa·s) | Wall Shear Stress /Pa | Flow Velocity /(m·s−1) | Temperature Gradient/ (°C·mm−1) | Solubility Coefficient of Wax Molecules /(10−3·°C−1) | Wax Deposition Rate /(g·m−2·h−1) |
---|---|---|---|---|---|---|---|---|
1 | 35 | 32 | 25.66 | 2.5 | 0.15 | 1.64 | 2.1 | 10.91 |
2 | 35 | 32 | 25.35 | 9.87 | 0.58 | 2.87 | 2.1 | 9.5 |
3 | 40 | 37 | 18.79 | 1.1 | 0.09 | 1.23 | 0.63 | 6.4 |
4 | 37 | 32 | 22.41 | 6.56 | 0.44 | 4.33 | 2.1 | 12.11 |
5 | 40 | 35 | 18.71 | 3.66 | 0.29 | 3.72 | 0.88 | 9.6 |
6 | 42 | 37 | 16.66 | 3.27 | 0.29 | 3.72 | 0.51 | 8.66 |
7 | 37 | 30 | 22.72 | 4.43 | 0.29 | 4.73 | 2.62 | 18.09 |
8 | 45 | 35 | 14.39 | 2.83 | 0.3 | 7.44 | 0.64 | 16.43 |
Number | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 0.13884 | 0.01215 | 0.37754 | 0.26225 | 0.35055 | 0.15102 | 0.36406 | 0.03613 | 0.05472 | 0.05040 |
Num | Experimental Value /(g·m−2·h−1) | ENN Model | AOA-ENN Model | PSO-ENN Model | GA-ENN Model | ||||
---|---|---|---|---|---|---|---|---|---|
Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | ||
1 | 10.91 | 11.6444 | 6.7314 | 11.2457 | 3.0770 | 10.9965 | 0.7929 | 11.2063 | 2.7159 |
2 | 9.5 | 9.6772 | 1.8653 | 9.6346 | 1.4168 | 10.1113 | 6.4347 | 8.9622 | 5.6611 |
3 | 6.4 | 8.1146 | 26.7906 | 6.2842 | 1.8094 | 6.9125 | 8.0078 | 6.2899 | 1.7203 |
4 | 12.11 | 11.7423 | 3.0363 | 12.1921 | 0.6780 | 11.9245 | 1.5318 | 11.5607 | 4.5359 |
5 | 9.6 | 9.0209 | 6.0323 | 9.8079 | 2.1656 | 9.4985 | 1.0573 | 9.6448 | 0.4667 |
6 | 8.66 | 8.0748 | 6.7575 | 8.7634 | 1.1940 | 8.5909 | 0.7979 | 8.8348 | 2.0185 |
7 | 18.09 | 18.5831 | 2.7258 | 18.1113 | 0.1177 | 19.1987 | 6.1288 | 16.6964 | 7.7037 |
8 | 16.43 | 13.2565 | 19.3153 | 16.1801 | 1.5210 | 16.4397 | 0.0590 | 17.436 | 6.1229 |
Model | Average Relative Error/% | Root Mean Square Error |
---|---|---|
ENN model | 9.1568 | 1.3527 |
AOA-ENN model | 1.4974 | 0.1830 |
PSO-ENN model | 3.1013 | 0.4902 |
GA-ENN model | 3.8681 | 0.6780 |
Num | Viscosity /(mPa·s) | Wall Shear Stress /Pa | Flow Velocity /(m·s−1) | Temperature Gradient /(°C·mm−1) | Concentration Gradient of Wax Molecules /(10−3 mol·L−1·°C−1) | Wax Deposition Rate /(g·m−2·h−1) |
---|---|---|---|---|---|---|
1 | 416.82 | 1.65 | 0.15 | 2.75 | 0.51 | 9.31 |
2 | 522.77 | 2.22 | 0.15 | 2.75 | 2.1 | 13.54 |
3 | 416.66 | 3.27 | 0.29 | 3.72 | 0.51 | 8.66 |
4 | 420.97 | 4.1 | 0.29 | 2.24 | 1.16 | 6.54 |
5 | 514.39 | 2.83 | 0.3 | 7.44 | 0.64 | 16.43 |
Number | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 0.02310 | 0.28732 | 0.01565 | 0.39717 | 0.14722 | 0.65623 | 0.07105 | 0.02188 | 0.03826 | 0.03554 |
Num | Experimental Value /(g·m−2·h−1) | ENN Model | AOA-ENN Model | PSO-ENN Model | GA-ENN Model | ||||
---|---|---|---|---|---|---|---|---|---|
Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | Prediction Result /(g·m−2·h−1) | Relative Error /% | ||
1 | 9.31 | 9.0411 | 2.8883 | 8.7031 | 6.5188 | 9.6266 | 3.4006 | 8.6188 | 7.4243 |
2 | 13.54 | 15.2431 | 12.5783 | 13.7728 | 1.7194 | 13.3321 | 1.5355 | 13.9532 | 3.0517 |
3 | 8.66 | 8.7485 | 1.0219 | 8.9597 | 3.4607 | 9.1143 | 5.2460 | 8.4769 | 2.1143 |
4 | 6.54 | 7.1438 | 9.2324 | 6.5282 | 0.1804 | 6.7906 | 3.8318 | 6.0917 | 6.8547 |
5 | 16.43 | 11.2222 | 31.6969 | 16.425 | 0.0304 | 16.1263 | 1.8484 | 16.9833 | 3.3676 |
Model | Average Relative Error/% | Root Mean Square Error |
---|---|---|
ENN model | 11.4836 | 2.4685 |
AOA-ENN model | 2.3819 | 0.3202 |
PSO-ENN model | 3.1725 | 0.3178 |
GA-ENN model | 4.5625 | 0.4877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Chen, Z.; Dai, K.; Quan, Q.; Ren, Z. Prediction of Wax Deposition Rate of Waxy Crude Oil Based on Improved Elman Neural Network. Processes 2025, 13, 3315. https://doi.org/10.3390/pr13103315
Jin W, Chen Z, Dai K, Quan Q, Ren Z. Prediction of Wax Deposition Rate of Waxy Crude Oil Based on Improved Elman Neural Network. Processes. 2025; 13(10):3315. https://doi.org/10.3390/pr13103315
Chicago/Turabian StyleJin, Wenbo, Zhuo Chen, Kemin Dai, Qing Quan, and Zongxiao Ren. 2025. "Prediction of Wax Deposition Rate of Waxy Crude Oil Based on Improved Elman Neural Network" Processes 13, no. 10: 3315. https://doi.org/10.3390/pr13103315
APA StyleJin, W., Chen, Z., Dai, K., Quan, Q., & Ren, Z. (2025). Prediction of Wax Deposition Rate of Waxy Crude Oil Based on Improved Elman Neural Network. Processes, 13(10), 3315. https://doi.org/10.3390/pr13103315