Effects of La2O3/Al2O3 Ratio in Slag Used for Electroslag Remelting on La Yield and Cleanliness of H13 Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Slag–Steel Interaction and Examinations
2.3. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Effects of La2O3/Al2O3 Ratio on the La Yield
3.2. Effects of La2O3/Al2O3 Ratio on the Cleanliness of the H13 Steel
3.3. Effects of La2O3/Al2O3 Ratio on the Viscosity, Electrical Conductivity, and Structure of the Slag
4. Conclusions
- The increase in the L/A-ratio in slag suppresses La oxidation in steel during slag–steel interactions. When L/A-ratio increases from 0.2 to 5.0, La yield increases from 5.3% to 63.2%. Thermodynamic calculation indicates that the activities of La2O3 increases with increasing L/A-ratio, whereas that of Al2O3 decreases. This further increases the equilibrium La content at a given Al content in steel and finally contributes to the increase in La yield. The La2O3 content in the 50wt%CaF2-20wt%CaO-Al2O3-La2O3 slag should be higher than 23.9 wt% to realize a desirable La-treatment effect for the investigated H13 steel.
- The desulfurization and deoxidation effect of slag are enhanced with increasing L/A-ratio. In addition, phosphorus and arsenic decrease when the L/A-ratio reaches 5.0. The removal rates of phosphorus and arsenic are 20.0% and 33.3%, respectively. The inclusion of La2O2S in the original H13 steel transforms into La-Mg-Al-O-S inclusions at L/A-ratios of 0.2 and 1, and changes to La-O-As-S-P inclusions when the L/A-ratio increases to 5.0. Thermodynamic calculation shows that LaP and LaS‧LaAs could be formed in the early stage of solidification as the L/A-ratio is 5.0. It provides an opportunity for the removal of phosphorus and arsenic in steel.
- Molecular dynamics simulation indicates that increasing L/A-ratio enhances the mobility of ions in molten slag and further decreases the viscosity as well as increases the electrical conductivity of slag. The concentration of free oxygen in slag sharply increases with the increasing L/A-ratio. This simplifies the aluminate network structure. The increase in the L/A-ratio provides better kinetic conditions for cleanliness improvement but also brings the risk of higher energy consumption.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altan, T.; Lilly, B.; Yen, Y.C. Manufacturing of dies and molds. CiRP Ann. 2001, 50, 404–422. [Google Scholar] [CrossRef]
- Krugljakow, A.; Rogachev, S.; Lebedeva, N.; Sokolov, P.Y.; Arsenkin, A.; Khatkevich, V. On the nature of hot work hardening phenomenon in die steel with regulated austenitic transformation during exploitation. Mater. Sci. Eng. A 2022, 833, 142548. [Google Scholar] [CrossRef]
- Liu, T.; Pei, Z.; Barton, D.; Thompson, G.B.; Brewer, L.N. Characterization of nanostructures in a high pressure die cast Al-Si-Cu alloy. Acta. Mater. 2022, 224, 117500. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Xie, J. Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism. Mater. Sci. Eng. A 2019, 752, 101–114. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Ren, Y.; Hou, X.; Yang, H.; Zhang, S. Thermo-mechanical fatigue behavior and microstructure evolution of 4Cr5Mo3V hot work die steel. Int. J. Fatigue 2024, 183, 108263. [Google Scholar] [CrossRef]
- Wen, T.; Yang, F.; Wang, J.; Yang, H.; Fu, J.; Ji, S. Ultrastrong and ductile synergy of additively manufactured H13 steel by tuning cellular structure and nano-carbides through tempering treatment. J. Mater. Res. Technol. 2023, 22, 157–168. [Google Scholar] [CrossRef]
- Wang, Y.L.; Song, K.X.; Zhang, Y.M.; Wang, G.X. Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Mater. Sci. Eng. A 2019, 746, 127–133. [Google Scholar] [CrossRef]
- Ma, D.; Zhou, J.; Chen, Z.; Zhang, Z.; Chen, Q.; Li, D. Influence of thermal homogenization treatment on structure and impact toughness of H13 ESR steel. J. Iron Steel Res. Int. 2009, 16, 56–60. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, M.; Zhang, Y.; Sun, Z.; Li, Q.; Zheng, T.; Zhou, B.; Shen, Z.; Ding, B.; Liu, C. Unraveling the influence of static magnetic field on carbide precipitation and mechanical properties in large-scale h13 hot work die steel. Metall. Mater. Trans. B 2024, 55, 3058–3071. [Google Scholar] [CrossRef]
- Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions. Eng. Fail. Anal. 2019, 98, 228–239. [Google Scholar] [CrossRef]
- Yao, D.; Li, J.; Li, J.; Zhu, Q. Effect of cold rolling on morphology of carbides and properties of 7Cr17MoV stainless steel. Mater. Manuf. Process. 2015, 30, 111–115. [Google Scholar] [CrossRef]
- Medvedeva, A.; Bergström, J.; Gunnarsson, S. Inclusions, stress concentrations and surface condition in bending fatigue of an H13 tool steel. Steel Res. Int. 2008, 79, 376–381. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.; Geng, X.; Chen, M.; Peng, L. Evolution mechanism of inclusions in h13 steel with rare earth magnesium alloy addition. ISIJ Int. 2019, 59, 1552–1561. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Li, G.; Wang, Q.; Zhang, Z.; Li, B. Role of vacuum on cleanliness improvement of steel during electroslag remelting. Vacuum 2018, 154, 351–358. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Li, G.; Huang, X.; Wang, Q.; Li, B. Cleanliness improvement and microstructure refinement of ingot processed by vacuum electroslag remelting. J. Mater. Res. Technol. 2020, 9, 1619–1630. [Google Scholar] [CrossRef]
- Qi, Y.; Li, J.; Shi, C.; Geng, R.; Zhang, J. Effect of directional solidification in electroslag remelting on the microstructure and cleanliness of an austenitic hot-work die steel. ISIJ Int. 2018, 58, 1275–1284. [Google Scholar] [CrossRef]
- Li, Z.B. Electroslag Metallurgy Theory and Practice; Metallurgical Industry Press: Beijing, China, 2010. [Google Scholar]
- Jiang, X.; Song, S.H. Enhanced hot ductility of a Cr–Mo low alloy steel by rare earth cerium. Mater. Sci. Eng. A 2014, 613, 171–177. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Liu, Y.; Wang, F.; Wang, Q. Cerium addition effect on modification of inclusions, primary carbides and microstructure refinement of H13 die steel. ISIJ Int. 2021, 61, 1850–1859. [Google Scholar] [CrossRef]
- Okabe, T.H.; Taninouchi, Y.K.; Zheng, C. Thermodynamic analysis of deoxidation of titanium through the formation of rare-earth oxyfluorides. Metall. Mater. Trans. B 2018, 49, 3107–3117. [Google Scholar] [CrossRef]
- Cao, Y.; Miao, Y.; Li, D.; Chen, Y.; Fu, P.; Liu, H.; Kang, X.; Liu, H.; Sun, C. On the mechanism of steel homogenization via rare earth addition: Experimental characterization and numerical simulation. Metall. Mater. Trans. B 2022, 53, 1858–1874. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Yu, L.; Fang, W. Yield of Y, La, Ce in high temperature alloy during electroslag remelting process. Metall. Res. Technol. 2016, 113, 405. [Google Scholar] [CrossRef]
- Weng, J.; Shi, W.; Xie, H. Effect of Ce on stainless steel performance during electroslag remelting (esr). Metalurgija 2018, 57, 67–70. [Google Scholar]
- Zhao, Y.; Shi, C.-b.; Wang, S.-j.; Ren, P.; Li, J. Reoxidation of liquid steel and evolution of inclusions during protective atmosphere electroslag remelting of Ce-containing heat-resistant stainless steel. J. Iron Steel Res. Int. 2024, 31, 1923–1935. [Google Scholar] [CrossRef]
- Duan, S.C.; Park, J.H. Comparison of oxidation behavior of various reactive elements in alloys during electroslag remelting (ESR) process: An overview. ISIJ Int. 2022, 62, 1561–1572. [Google Scholar] [CrossRef]
- Hou, D.; Jiang, Z.H.; Dong, Y.W.; Gong, W.; Cao, Y.L.; Cao, H. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1 mass-transfer model. ISIJ Int. 2017, 57, 1400–1409. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, M.; Yang, W.; Zhang, L. Effect of the La2O3 content in slag on inclusions in al-killed steels. Metall. Mater. Trans. B 2022, 53, 2088–2103. [Google Scholar] [CrossRef]
- Upolovnikova, A.; Babenko, A.; Smirnov, L. Equilibrium content of lanthanum in metal under the slag of CaO–SiO2–La2O3–15% Al2O3–8% MgO system. Steel Transl. 2020, 50, 865–869. [Google Scholar] [CrossRef]
- Li, T.; Li, G.; Zhang, Z.; Liu, Y.; Wang, X. Fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(La2O3) slag for vacuum electroslag remelting. Vacuum 2022, 196, 110807. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, G.; Azarov, A.; Monakhov, E.; Tang, K.; Müller, M.; Safarian, J. Effects of La2O3 addition into CaO-SiO2 slag: Structural evolution and impurity separation from Si-Sn alloy. Metall. Mater. Trans. B 2021, 52, 3045–3063. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H. Estimation of TiO2-FeO-Na2O slag viscosity through molecular dynamics simulations for an energy efficient ilmenite smelting process. Sci. Rep. 2019, 9, 17338. [Google Scholar] [CrossRef]
- Wu, T.; He, S.; Liang, Y.; Wang, Q. Molecular dynamics simulation of the structure and properties for the CaO–SiO2 and CaO–Al2O3 systems. J. Non-Cryst. Solids 2015, 411, 145–151. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Effect of fluorine on melt structure for CaO–SiO2–CaF2 and CaO–Al2O3–CaF2 by molecular dynamics simulations. ISIJ Int. 2020, 60, 2176–2182. [Google Scholar] [CrossRef]
- Park, B.; Li, H.; Corrales, L.R. Molecular dynamics simulation of La2O3–Na2O–SiO2 glasses. I. The structural role of La3+ cations. J. Non-Cryst. Solids 2002, 297, 220–238. [Google Scholar] [CrossRef]
- Rammutla, K.; Comins, J.; Erasmus, R.; Netshisaulu, T.; Ngoepe, P.; Chadwick, A. Light scattering and computer simulation studies of superionic pure and La-doped BaF2. Chem. Phys. 2016, 467, 6–12. [Google Scholar] [CrossRef]
- Gao, L.W.; Xia, X.B.; Xu, X.Q.; Chen, C.Q. Immobilization of radioactive fluoride waste in aluminophosphate glass: A molecular dynamics simulation. Nucl. Sci. Tech. 2018, 29, 92. [Google Scholar] [CrossRef]
- Hino, M.; Ito, K. Thermodynamic Data for Steelmaking; Tohoku University Press: Sendai, Japan, 2010. [Google Scholar]
- Huang, H.X. Iron and Steel Metallurgy Principles; Metallurgical Industry Press: Beijing, China, 2013. [Google Scholar]
- Chen, J.X. Handbook of Chart Data About Steelmaking, 2nd ed.; Beijing Metallurgical Industry Press: Beijing, China, 2010. [Google Scholar]
- Wu, C.; Cheng, G.; Tian, J. A thermodynamic model for evaluation of mass action concentrations of La2O3-Al2O3-CaF2-CaO-MgO slags for electroslag remelting based on the ion and molecule coexistence theory. High Temp. Mat. Pr. 2013, 32, 541–550. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Hou, D.; Dong, Y.W.; Cao, Y.L.; Cao, H.B.; Gong, W. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall. Mater. Trans. B 2016, 47, 1465–1474. [Google Scholar] [CrossRef]
- Yang, X.M.; Shi, C.B.; Zhang, M.; Zhang, J. A thermodynamic model for prediction of iron oxide activity in some FeO-containing slag systems. Steel Res. Int. 2012, 83, 244–258. [Google Scholar] [CrossRef]
- Yang, X.; Long, H.; Wu, C.; Wu, B. Effect of refining slag containing Ce2O3 on steel cleanliness. J. Rare Earths 2011, 29, 1079–1083. [Google Scholar] [CrossRef]
- Mills, K.; Yuan, L.; Jones, R. Estimating the physical properties of slags. J. S. Afr. I. Min. Metall. 2011, 111, 649–658. [Google Scholar]
- Mills, K.; Sridhar, S. Viscosities of ironmaking and steelmaking slags. Ironmak. Steelmak. 1999, 26, 262–268. [Google Scholar] [CrossRef]
- Honma, T.; Benino, Y.; Fujiwara, T.; Komatsu, T.; Sato, R.; Dimitrov, V. Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses. J. Appl. Phys. 2002, 91, 2942–2950. [Google Scholar] [CrossRef]
- Li, S.; Cheng, G.; Huang, Y.; Dai, W.; Miao, Z. Kinetics of phosphorus transfer during industrial electroslag remelting of G20CrNi2Mo bearing steel. Metals 2019, 9, 467. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, S.; Yu, P.; Sun, L.; Wang, Y. Effect of steel-refractory reactions on removal of arsenic from molten steel with lanthanum additions. ISIJ Int. 2020, 60, 2316–2324. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, L.; Zhang, L.; Wang, Y.; Shu, Y.; Zhou, Y. Investigation of Re-O-S-As inclusions in high carbon steels. Metall. Mater. Trans. B 2017, 48, 2849–2858. [Google Scholar] [CrossRef]
- Gong, W.; Wang, C.; Wang, P.F.; Jiang, Z.H.; Wang, R.; Li, H.B. Effect of La on inclusions and fracture toughness of low-alloy ultra-high-strength 40CrNi2Si2MoVA steel. Journal of Iron and Steel Res. Int. 2021, 28, 1408–1416. [Google Scholar] [CrossRef]
- Kim, Y.; Kashiwaya, Y.; Chung, Y. Effect of varying Al2O3 contents of CaO–Al2O3–SiO2 slags on lumped MgO dissolution. Ceram. Int. 2020, 46, 6205–6211. [Google Scholar] [CrossRef]
- Zheng, H.; Duan, S.; Zhang, L. Investigation of lanthanum content on nonmetallic inclusions and mechanical properties of low alloy wear-resistant steel containing P and As elements through in situ tensile test. Metall. Mater. Trans. B 2025, 56, 120–140. [Google Scholar] [CrossRef]
- Wang, H.; Bai, B.; Jiang, S.; Sun, L.; Wang, Y. An in situ study of the formation of rare earth inclusions in arsenic high carbon steels. ISIJ Int. 2019, 59, 1259–1265. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances; VCH Verlag GmbH: Weinheim, Germany, 1995. [Google Scholar]
- Clyne, T.; Kurz, W. Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A 1981, 12, 965–971. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Liu, Y.; Wang, Q.; Zhang, Z. Role of slag on inclusions control and its effect on primary carbides in H13 steel. Metall. Res. Technol. 2020, 117, 111. [Google Scholar] [CrossRef]
- Mongalo, L.; Lopis, A.S.; Venter, G.A. Molecular dynamics simulations of the structural properties and electrical conductivities of CaO–MgO–Al2O3–SiO2 melts. J. Non-Cryst. Solids 2016, 452, 194–202. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Li, G.; Wang, Q.; Li, B. Effect of current on segregation and inclusions characteristics of dual alloy ingot processed by electroslag remelting. High Temp. Mat. Pr. 2019, 38, 207–218. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Chen, Y.; Wang, Q.; Liu, Y. Industrial trials on preparation of cerium-treated H13 steel by electroslag remelting with cerium-oxide containing slag. Steel Res. Int. 2023, 94, 2200786. [Google Scholar] [CrossRef]
No. | CaF2 | CaO | Al2O3 | La2O3 |
---|---|---|---|---|
Slag1 | 50 | 20 | 25 | 5 |
Slag2 | 50 | 20 | 15 | 15 |
Slag3 | 50 | 20 | 5 | 25 |
C | Si | Mn | Cr | Mo | V |
---|---|---|---|---|---|
0.38 | 1.18 | 0.34 | 4.96 | 1.32 | 0.91 |
Al | La | O | S | As | P |
0.040 | 0.019 | 0.004 | 0.003 | 0.003 | 0.01 |
Ion Couple | Aij (eV) | ρij (Å) | Cij (eV·Å6) |
---|---|---|---|
Ca-Ca | 2412.5 | 0.3000 | 0 |
Ca-Al | 1406.25 | 0.3000 | 0 |
Ca-O | 8868.75 | 0.2500 | 0 |
Ca-F | 1272.80 | 0.3000 | 0 |
Al-Al | 10,689.03 | 0.1420 | 0 |
Al-O | 3293.75 | 0.2500 | 0 |
Al-F | 43,851.02 | 0.1610 | 0 |
La-O | 2133.24 | 0.3590 | 0 |
La-F | 1476.86 | 0.3353 | 0 |
O-O | 454.34 | 0.3600 | 0 |
O-F | 662.50 | 0.3200 | 0 |
F-F | 135,253.00 | 0.1800 | 0 |
No. | S | O | As | P | La | Al |
---|---|---|---|---|---|---|
T1 | 0.0018 | 0.0032 | 0.003 | 0.010 | 0.001 | 0.091 |
T2 | 0.0011 | 0.0022 | 0.003 | 0.010 | 0.002 | 0.075 |
T3 | 0.0010 | 0.0010 | 0.002 | 0.008 | 0.012 | 0.061 |
C | Si | Mn | Cr | Mo | V | La | Al | O | S | As | P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La | −0.024 | - | - | - | - | - | −0.008 | - | −5 | −4.8 | - | - |
Al | 0.091 | 0.0056 | 0.0035 | 0.012 | −0.0083 | - | - | 0.045 | −6.6 | 0.03 | - | 0.033 |
O | −0.45 | −0.1 | −0.021 | −0.041 | 0.0035 | −0.3 | −0.57 | −0.96 | −0.2 | −0.133 | 0.007 | 0.07 |
S | 0.111 | 0.075 | −0.026 | −0.01 | 0.0027 | −0.016 | −18.3 | 0.041 | −0.27 | −0.046 | 0.0041 | 0.29 |
P | 0.13 | 0.12 | 0 | −0.03 | 0 | −0.023 | 0 | 0 | 0.13 | 0.028 | - | 0.062 |
As | 0.25 | - | - | - | - | - | - | - | - | 0.0037 | 0.296 | - |
Units | Mole Number | Mass Action Concentration | |
---|---|---|---|
Ions | |||
Simple molecule | |||
Complex molecule | |||
Formation Reaction | Standard Gibbs Free Energy Change | Mass Action Concentration |
---|---|---|
Reactions | ||
---|---|---|
−1,511,643 + 379.2T | −785,705.7 | |
−1,425,956 + 351.1T | −731,279.0 | |
−490,000 + 171.0T | −4195.9 | |
−317,590 + 123.28T | 43,606 | |
−355,328 + 187.10T | 147,333.8 | |
−800,553.1 + 332.78T | 67,547.3 | |
−1,073,123 + 504.91T | 630,964.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; He, S.; Yu, H. Effects of La2O3/Al2O3 Ratio in Slag Used for Electroslag Remelting on La Yield and Cleanliness of H13 Steel. Processes 2025, 13, 3185. https://doi.org/10.3390/pr13103185
Wang X, He S, Yu H. Effects of La2O3/Al2O3 Ratio in Slag Used for Electroslag Remelting on La Yield and Cleanliness of H13 Steel. Processes. 2025; 13(10):3185. https://doi.org/10.3390/pr13103185
Chicago/Turabian StyleWang, Xijie, Sibo He, and Huan Yu. 2025. "Effects of La2O3/Al2O3 Ratio in Slag Used for Electroslag Remelting on La Yield and Cleanliness of H13 Steel" Processes 13, no. 10: 3185. https://doi.org/10.3390/pr13103185
APA StyleWang, X., He, S., & Yu, H. (2025). Effects of La2O3/Al2O3 Ratio in Slag Used for Electroslag Remelting on La Yield and Cleanliness of H13 Steel. Processes, 13(10), 3185. https://doi.org/10.3390/pr13103185