Trends in Using Microalgae as a Green Energy Source: Conventional, Machine Learning, and Hybrid Modeling Methods
Abstract
1. Introduction
- Q1: How many research articles were published annually between 2005 and 2024 around microalgae as an energy source and modeling?
- Q2: Who are the most prominent authors in these research areas?
- Q3: Which are the most relevant journals in the field?
- Q4: What are the thematic trends in these research topics?
2. Software and Methods
2.1. Study Design
2.2. Data Source
2.3. Search Strategy
2.4. Bibliometric Analysis
2.5. Limitations
3. Results and Discussion
3.1. Trends in the Annual Production of Original Papers
3.2. Most Cited Authors and Their Collaborations
3.3. Journals That Host the Highest Number of Articles
4. Microalgae as an Energy Source, Modeling Approaches, and Trending Topics
4.1. Conventional Modeling
4.2. Machine Learning Modeling
4.3. Hybrid Approaches
Aspect | Conventional Models | Machine Learning Models | Hybrid Models |
---|---|---|---|
Modeling Basis | Differential equations (e.g., Monod, Gompertz), balance models, empirical response surfaces, etc. | Pattern recognition from data (ANN, SVM, RF, etc.) | Mechanistic core + ML layers (e.g., ANN correcting Monod) |
Interpretability | High—parameters have physical/biological meaning | Low—often black-box models | Medium—interpretable structure with adaptive ML components |
Data Requirements 1 | Low—a few experiments may suffice | High—requires large and diverse datasets | Medium—benefits from prior knowledge, needs fewer data than pure ML |
Accuracy | Moderate/High—limited in capturing nonlinearities | High—can capture complex and abrupt behaviors | High—combines theoretical structure with data-driven refinement |
Scalability/Generalization | Suitable for extrapolation if based on physical laws | Limited—poor performance outside the training domain | Better extrapolation than ML-only models |
Optimization Capabilities | Manual or using statistical tools (e.g., RSM) | Automatic via metaheuristics (e.g., XGBoost) | Multi-objective, physics-informed optimization (e.g., Bayesian, ANFIS) |
Update Flexibility | Static—reparameterization needed for new data | Dynamic—retrainable with new data | Semi-dynamic—ML component adapts, constrained by a mechanistic base |
Variable Integration | Limited—only predefined variables can be modeled | Flexible—integrates spectral, genomic, and omics data | Flexible—combines known constraints with novel variables |
Performance in Data-Sparse Scenarios | Performs reliably with little data, robust in low-data conditions | Poor convergence or overfitting is likely | More robust than ML, can handle moderate data availability |
Common Applications | Growth kinetics, photobioreactor design, stoichiometry, nutrient modeling | Predicting lipid, H2, biomass, CO2 uptake; real-time control, vision-based monitoring | Predicting productivity under new conditions: multi-objective optimization |
Representative Models/Tools | Monod, Droop, material-energy balances, RSM, etc. | ANN, SVM, Random Forest, LSTM, Deep Learning, Neurofuzzy, XGBoost, etc. | ANN + Monod, SVR + differential equations, ANFIS, etc. |
Strengths | Physically grounded, interpretable, extrapolative | Flexible, accurate, data-responsive, captures complex dynamics | Balances knowledge and data, robust predictions, and more reliable outside the training range |
Weaknesses | Struggles with high complexity, assumes idealized conditions | Poor interpretability, needs large datasets, risk of unrealistic outputs | Requires integration expertise, consistency in time scales, and advanced calibration |
Technological Readiness | Mature and widely implemented | Growing adoption; mature in ANN and Random Forest applications | Emerging but expanding rapidly in multi-criteria optimization |
Outlook | Always necessary, but increasingly used in hybrid approaches | Relevant since the 2010s; expected to grow with big data and automation | Projected to expand significantly with deep learning and hybrid intelligence techniques |
4.4. Trending Topics as Measured by Bibliometrix and VOSviewer
4.4.1. Scaling and Sustainability
4.4.2. Biofuel Pathways and Machine Learning
4.4.3. Biotechnology, Chemistry, and Metabolism
4.4.4. Photophysiology and Computational Simulation
4.4.5. Wastewater Treatment and Biorefineries
5. Conclusions
- The production of original papers on this topic underwent exponential growth up to 2022.
- To become a leading author in the field of study, six published papers are required.
- The top journals preferred by authors to publish in the field of study have an SJR higher than 0.257, with Bioresource Technology as the preferred journal.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Scopus | |||
---|---|---|---|
Rank | Author | Betweenness | PageRank |
1st | Chen J | 32.70 | 0.034 |
2nd | Ye Q | 15.05 | 0.029 |
3rd | Li X | 14.33 | 0.017 |
4th | Zhao | 14.00 | 0.019 |
5th | Zhang Y | 10.08 | 0.015 |
Appendix B
Rank | Terms | Frequency |
---|---|---|
1st | Microorganisms | 243 |
2nd | Biomass | 233 |
3rd | Carbon dioxide | 122 |
4th | Biofuels | 95 |
5th | Computer simulation | 95 |
6th | Photobioreactors | 78 |
7th | Metabolism | 65 |
8th | Models | 62 |
9th | Computational fluid dynamics | 60 |
10th | Kinetics | 59 |
References
- Yahaya, E.; Yeo, W.S.; Nandong, J.; Ngu, J.C.Y. CO2 Fed Microalgae Cultivation in Photobioreactor: Review on Challenges and Possible Solutions. Environ. Technol. Rev. 2025, 14, 540–564. [Google Scholar] [CrossRef]
- Abdur Razzak, S.; Bahar, K.; Islam, K.M.O.; Haniffa, A.K.; Faruque, M.O.; Hossain, S.M.Z.; Hossain, M.M. Microalgae Cultivation in Photobioreactors: Sustainable Solutions for a Greener Future. Green Chem. Eng. 2024, 5, 418–439. [Google Scholar] [CrossRef]
- Pruvost, J.; Le Gouic, B.; Cornet, J.F. Kinetic Modeling of CO2 Biofixation by Microalgae and Optimization of Carbon Supply in Various Photobioreactor Technologies. ACS Sustain. Chem. Eng. 2022, 10, 12826–12842. [Google Scholar] [CrossRef]
- Perin, G.; Morosinotto, T.; Jacob-Lopes, E.; Janssen, M. Understanding Regulation in Complex Environments: A Route to Enhance Photosynthetic Light-Reactions in Microalgae Photobioreactors. Front. Photobiol. 2023, 1, 1274525. [Google Scholar] [CrossRef]
- Liao, Y.; Fatehi, P.; Liao, B. A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal. Membranes 2024, 14, 245. [Google Scholar] [CrossRef]
- Yahaya, E.; Yeo, W.S.; Nandong, J. Process Modeling and 3-Stage Photobioreactor Design for Algae Cultivation and CO2 Capture: A Case Study Using Palm Oil Mill Effluent. Biochem. Eng. J. 2024, 212, 109532. [Google Scholar] [CrossRef]
- Amanna, B.; Bahri, P.A.; Moheimani, N.R. Application of Computational Fluid Dynamics in Optimizing Microalgal Photobioreactors. Algal Res. 2024, 83, 103718. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, G.; Cheng, Y.; Zhu, H.; Chi, Z.; Shen, H.; Zhu, C. Numerical Study on the Internal Fluid Mixing and Its Influencing Mechanisms of the Wave-Driven Floating Photobioreactor for Microalgae Production. Front. Mar. Sci. 2023, 10, 1095590. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Syed, T.; Brinitzer, G.; Frick, K.; Schmid-Staiger, U.; Haasdonk, B.; Tovar, G.E.M.; Krujatz, F.; Mädler, J.; Urbas, L. Improving Microalgae Growth Modeling of Outdoor Cultivation with Light History Data Using Machine Learning Models: A Comparative Study. Bioresour. Technol. 2023, 390, 129882. [Google Scholar] [CrossRef] [PubMed]
- Imamoglu, E. Artificial Intelligence and/or Machine Learning Algorithms in Microalgae Bioprocesses. Bioengineering 2024, 11, 1143. [Google Scholar] [CrossRef]
- Syed, T.; Krujatz, F.; Ihadjadene, Y.; Mühlstädt, G.; Hamedi, H.; Mädler, J.; Urbas, L. A Review on Machine Learning Approaches for Microalgae Cultivation Systems. Comput. Biol. Med. 2024, 172, 108248. [Google Scholar] [CrossRef]
- Porras Reyes, L.; Havlik, I.; Beutel, S. Software Sensors in the Monitoring of Microalgae Cultivations. Rev. Environ. Sci. Bio/Technology 2024, 23, 67–92. [Google Scholar] [CrossRef]
- Shahhoseyni, S.; Greco, L.; Sivaram, A.; Mansouri, S.S. A Reduced-Order Hybrid Model for Photobioreactor Performance and Biomass Prediction. Algal Res. 2024, 84, 103750. [Google Scholar] [CrossRef]
- Sheik, A.G.; Kumar, A.; Ansari, F.A.; Raj, V.; Peleato, N.M.; Patan, A.K.; Kumari, S.; Bux, F. Reinvigorating Algal Cultivation for Biomass Production with Digital Twin Technology—A Smart Sustainable Infrastructure. Algal Res. 2024, 84, 103779. [Google Scholar] [CrossRef]
- Uguz, S.; Sahin, Y.S.; Kumar, P.; Yang, X.; Anderson, G. Real-Time Algal Monitoring Using Novel Machine Learning Approaches. Big Data Cogn. Comput. 2025, 9, 153. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Purba, L.D.A.; Susanti, H.; Admirasari, R.; Praharyawan, S.; Taufikurahman; Iwamoto, K. Bibliometric Insights into Microalgae Cultivation in Wastewater: Trends and Future Prospects for Biolipid Production and Environmental Sustainability. J. Environ. Manage. 2024, 352, 120104. [Google Scholar] [CrossRef]
- Hamid Nour, A.; Mokaizh, A.A.B.; Alazaiza, M.Y.D.; Bashir, M.J.K.; Mustafa, S.E.; Baarimah, A.O. Innovative Strategies for Microalgae-Based Bioproduct Extraction in Biorefineries: Current Trends and Future Solutions Integrating Wastewater Treatment. Sustainability 2024, 16, 10565. [Google Scholar] [CrossRef]
- Alagumalai, A.; Song, H. Exploring the Landscape of Machine Learning-Aided Research in Biofuels and Biodiesel: A Bibliometric Analysis. Green Energy Resour. 2024, 2, 100089. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, X.; Ma, X.; Xue, P.; Tang, X.; Li, X.; Wang, S. A Review on Machine Learning-Aided Hydrothermal Liquefaction Based on Bibliometric Analysis. Energies 2024, 17, 5254. [Google Scholar] [CrossRef]
- Islam, M.S.; Fuad, M.M.N.; Malitha, S.B.; Alam, M.Z. Advanced Biofuels Research: A Scopus Database-Driven Bibliometric Evaluation and Future Directions Forecast via Machine Learning and Deep Learning. Clean. Chem. Eng. 2025, 11, 100188. [Google Scholar] [CrossRef]
- Ning, H.; Li, R.; Zhou, T. Machine Learning for Microalgae Detection and Utilization. Front. Mar. Sci. 2022, 9, 947394. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Karahan, S.; Gül, L.F. Mapping Current Trends on Gamification of Cultural Heritage. In Game + Design Education; Springer International Publishing: Cham, Switzerland, 2021; pp. 281–293. [Google Scholar]
- Gaur, A.; Kumar, M. A Systematic Approach to Conducting Review Studies: An Assessment of Content Analysis in 25 Years of IB Research. J. World Bus. 2018, 53, 280–289. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric Methods: Pitfalls and Possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- Basanta, R.; Delgado, M.G.; Martínez, J.C.; Vázquez, H.M.; Vázquez, G.B. Sostenibilidad del Reciclaje de Residuos de la Agroindustria Azucarera: Una Revisión Recycling of Waste from Sugarcane Agroindustry: A Review. CYTA J. Food 2007, 5, 293–305. [Google Scholar] [CrossRef]
- Luzi, G.; McHardy, C. Modeling and Simulation of Photobioreactors with Computational Fluid Dynamics—A Comprehensive Review. Energies 2022, 15, 3966. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A.; Bendavid, E.; Salholz-Hillel, M.; Boyack, K.W.; Baas, J. Massive Covidization of Research Citations and the Citation Elite. Proc. Natl. Acad. Sci. USA 2022, 119, e2204074119. [Google Scholar] [CrossRef]
- Silva, S.C.; Ferreira, I.C.F.R.; Dias, M.M.; Filomena Barreiro, M. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules 2020, 25, 3406. [Google Scholar] [CrossRef]
- Tan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Ahmad, S.A.; Shaharuddin, N.A. Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. Plants 2021, 10, 2358. [Google Scholar] [CrossRef]
- De-luca, R.; Bezzo, F.; Béchet, Q.; Bernard, O. Meteorological Data-Based Optimal Control Strategy for Microalgae Cultivation in Open Pond Systems. Complexity 2019, 2019, 4363895. [Google Scholar] [CrossRef]
- Polizzi, B.; Bernard, O.; Ribot, M. A Time-Space Model for the Growth of Microalgae Biofilms for Biofuel Production. J. Theor. Biol. 2017, 432, 55–79. [Google Scholar] [CrossRef]
- Baroukh, C.; Turon, V.; Bernard, O. Dynamic Metabolic Modeling of Heterotrophic and Mixotrophic Microalgal Growth on Fermentative Wastes. PLoS Comput. Biol. 2017, 16, e1005590. [Google Scholar] [CrossRef]
- Kliphuis, A.M.J.; Klok, A.J.; Martens, D.E.; Lamers, P.P.; Janssen, M.; Wijffels, R.H. Metabolic Modeling of Chlamydomonas Reinhardtii: Energy Requirements for Photoautotrophic Growth and Maintenance. J. Apply Phycol. 2012, 24, 253–266. [Google Scholar] [CrossRef]
- Arimbrathodi, S.P.; Javed, M.A.; Hamouda, M.A.; Aly Hassan, A.; Ahmed, M.E. BioH2 Production Using Microalgae: Highlights on Recent Advancements from a Bibliometric Analysis. Water 2023, 15, 185. [Google Scholar] [CrossRef]
- Martín, M.I.; Ana, S.; Pestana, I.; António, C.; Guerrero, P. Lotka Law Applied to the Scientific Production of Information Science Area. Braz. J. Inf. Sci. Res. Trends 2009, 2, 16–32. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, X.; Qin, Y.; Lu, Z.; Ma, Q.; Zhao, X.; Liu, L. Visualization and Mapping of Literature on the Scientific Analysis of Wall Paintings: A Bibliometric Analysis from 2011 to 2021. Herit. Sci. 2022, 10, 105. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Zhao, W.; Lu, X. Harnessing Artificial Intelligence to Revolutionize Microalgae Biotechnology: Unlocking Sustainable Solutions for High-Value Compounds and Carbon Neutrality. Mar. Drugs 2025, 23, 184. [Google Scholar] [CrossRef]
- Schediwy, K.; Trautmann, A.; Steinweg, C.; Posten, C. Microalgal Kinetics—A Guideline for Photobioreactor Design and Process Development. Eng. Life Sci. 2019, 19, 830. [Google Scholar] [CrossRef]
- Sharma, P.; Sivaramakrishnaiah, M.; Deepanraj, B.; Saravanan, R.; Reddy, M.V. A Novel Optimization Approach for Biohydrogen Production Using Algal Biomass. Int. J. Hydrogen Energy 2024, 52, 94–103. [Google Scholar] [CrossRef]
- Salameh, T.; Sayed, E.T.; Olabi, A.G.; Hdaib, I.I.; Allan, Y.; Alkasrawi, M.; Abdelkareem, M.A. Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process. Ferment. 2022, 8, 483. [Google Scholar] [CrossRef]
- Pérez-Guzmán, S.M.; Hernández-Aguilar, E.; Alvarado-Lassman, A.; Méndez-Contreras, J.M. Kinetics of Obtaining Microalgal Biomass and Removal of Organic Contaminants in Photobioreactors Operated with Microalgae—Study Case: Treatment of Wastewater from a Poultry Slaughterhouse. Water 2024, 16, 1558. [Google Scholar] [CrossRef]
- Tunay, D.; Yildirim, O.; Ozkaya, B.; Demir, A. Determination of Photoautotrophic Growth and Inhibition Kinetics by the Monod and the Aiba Models and Bioenergetics of Local Microalgae Strain. Chemosphere 2022, 292, 133330. [Google Scholar] [CrossRef]
- Saldarriaga, L.F.; Almenglo, F.; Ramírez, M.; Cantero, D. Kinetic Characterization and Modeling of a Microalgae Consortium Isolated from Landfill Leachate under a High CO2 Concentration in a Bubble Column Photobioreactor. Electron. J. Biotechnol. 2020, 44, 47–57. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
- Bajwa, K.; Bishnoi, N.R.; Kirrolia, A.; Gupta, S.; Tamil Selvan, S. Response Surface Methodology as a Statistical Tool for Optimization of Physio-Biochemical Cellular Components of Microalgae Chlorella Pyrenoidosa for Biodiesel Production. Appl. Water Sci. 2019, 9, 128. [Google Scholar] [CrossRef]
- Ali, H.; Solsvik, J.; Wagner, J.L.; Zhang, D.; Hellgardt, K.; Park, C.W. CFD and Kinetic-Based Modeling to Optimize the Sparger Design of a Large-Scale Photobioreactor for Scaling up of Biofuel Production. Biotechnol. Bioeng. 2019, 116, 2200–2211. [Google Scholar] [CrossRef] [PubMed]
- Legrand, J.; Artu, A.; Pruvost, J. A Review on Photobioreactor Design and Modelling for Microalgae Production. React. Chem. Eng. 2021, 6, 1134–1151. [Google Scholar] [CrossRef]
- Shoener, B.D.; Schramm, S.M.; Béline, F.; Bernard, O.; Martínez, C.; Plósz, B.G.; Snowling, S.; Steyer, J.P.; Valverde-Pérez, B.; Wágner, D.; et al. Microalgae and Cyanobacteria Modeling in Water Resource Recovery Facilities: A Critical Review. Water Res. X 2019, 2, 100024. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Tolman, M.; Thames, H.D.; Withers, H.R.; Mason, K.A.; Transtrum, M.K. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems. PLoS Comput. Biol. 2016, 12, e1005227. [Google Scholar] [CrossRef]
- Fernández Izquierdo, P.; Patiño Coral, M.; Ortiz Benavides, F. Application of an Artificial Neural Network Coupled to a Genetic Algorithm for the Production of Polyphenols in Parachlorella Kessleri Grown under Mixotrophic Conditions. Algal Res. 2024, 77, 103331. [Google Scholar] [CrossRef]
- Liyanaarachchi, V.C.; Nishshanka, G.K.S.H.; Sakarika, M.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Kornaros, M. Artificial Neural Network (ANN) Approach to Optimize Cultivation Conditions of Microalga Chlorella Vulgaris in View of Biodiesel Production. Biochem. Eng. J. 2021, 173, 108072. [Google Scholar] [CrossRef]
- Ahmad Sobri, M.Z.; Redhwan, A.; Ameen, F.; Lim, J.W.; Liew, C.S.; Mong, G.R.; Daud, H.; Sokkalingam, R.; Ho, C.D.; Usman, A.; et al. A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae. Fermentation 2023, 9, 243. [Google Scholar] [CrossRef]
- Monroy, I.; Buitrón, G. Diagnosis of Undesired Scenarios in Hydrogen Production by Photo-Fermentation. Water Sci. Technol. 2018, 78, 1652–1657. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Sultana, N.; Razzak, S.A.; Hossain, M.M. Modeling and Multi-Objective Optimization of Microalgae Biomass Production and CO2 Biofixation Using Hybrid Intelligence Approaches. Renew. Sustain. Energy Rev. 2022, 157, 112016. [Google Scholar] [CrossRef]
- Coşgun, A.; Günay, M.E.; Yıldırım, R. Machine Learning for Algal Biofuels: A Critical Review and Perspective for the Future. Green Chem. 2023, 25, 3354–3373. [Google Scholar] [CrossRef]
- Buskirk, T.D. Surveying the Forests and Sampling the Trees: An Overview of Classification and Regression Trees and Random Forests with Applications in Survey Research. Surv. Pract. 2018, 11, 1. [Google Scholar] [CrossRef]
- Tummawai, T.; Rohitatisha Srinophakun, T.; Padungthon, S.; Sukpancharoen, S. Application of Artificial Intelligence and Image Processing for the Cultivation of Chlorella Sp. Using Tubular Photobioreactors. ACS Omega 2024, 9, 46017–46029. [Google Scholar] [CrossRef]
- Rezk, H.; Alahmer, A.; Olabi, A.G.; Sayed, E.T. Application of Artificial Intelligence and Red-Tailed Hawk Optimization for Boosting Biohydrogen Production from Microalgae. Int. J. Thermofluids 2024, 24, 100876. [Google Scholar] [CrossRef]
- Yussof, F.N.; Maan, N.; Reba, M.N.M. LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah. Int. J. Environ. Res. Public Health 2021, 18, 7650. [Google Scholar] [CrossRef]
- Li, Y.; Guo, J.; Freitas, G.R.; Badenes, S.; Oliveira, R.; Martins, F.G. A Review of Intelligent Modeling for Microalgae Systems: Integrating Data Mining, Machine Learning, and Hybrid Approaches. Processes 2025, 13, 2956. [Google Scholar] [CrossRef]
- del Rio-Chanona, E.A.; Wagner, J.L.; Ali, H.; Fiorelli, F.; Zhang, D.; Hellgardt, K. Deep Learning-Based Surrogate Modeling and Optimization for Microalgal Biofuel Production and Photobioreactor Design. AIChE J. 2019, 65, 915–923. [Google Scholar] [CrossRef]
- Luna, M.F.; Ochsner, A.M.; Amstutz, V.; von Blarer, D.; Sokolov, M.; Arosio, P.; Zinn, M. Modeling of Continuous PHA Production by a Hybrid Approach Based on First Principles and Machine Learning. Processes 2021, 9, 1560. [Google Scholar] [CrossRef]
- Agharafeie, R.; Ramos, J.R.C.; Mendes, J.M.; Oliveira, R. From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives. Fermentation 2023, 9, 922. [Google Scholar] [CrossRef]
- Akenteng, Y.D.; Chen, H.; Opoku, K.N.; Ullah, F.; Wang, S.; Kumar, S. The Role of Computational Fluid Dynamics (CFD) in Phytohormone-Regulated Microalgae-Based Carbon Dioxide Capture Technology. Sustainability 2025, 17, 860. [Google Scholar] [CrossRef]
- Kim, K.; Hourfar, F.; Razik, A.; Rizwan, A.H.B.; Almansoori, M.; Fowler, A.; Elkamel, M.; Kim, K.; Hourfar, F.; Bin, A.H.; et al. Importance of Microalgae and Municipal Waste in Bioenergy Products Hierarchy—Integration of Biorefineries for Microalgae and Municipal Waste Processing: A Review. Energies 2023, 16, 6361. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Kassas, H.Y.; Ali, S.S. Microalgae-Based Bioremediation of Refractory Pollutants: An Approach towards Environmental Sustainability. Microb. Cell Factories 2025, 24, 19. [Google Scholar] [CrossRef]
- Sweiss, M.; Assi, S.; Barhoumi, L.; Al-Jumeily, D.; Watson, M.; Wilson, M.; Arnot, T.; Scott, R. Qualitative and Quantitative Evaluation of Microalgal Biomass Using Portable Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and Machine Learning Analytics. J. Chem. Technol. Biotechnol. 2024, 99, 92–108. [Google Scholar] [CrossRef]
- Tiquia-Arashiro, S.; Li, X.; Pokhrel, K.; Kassem, A.; Abbas, L.; Coutinho, O.; Kasperek, D.; Najaf, H.; Opara, S. Applications of Fourier Transform-Infrared Spectroscopy in Microbial Cell Biology and Environmental Microbiology: Advances, Challenges, and Future Perspectives. Front. Microbiol. 2023, 14, 1304081. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Kamruzzaman, M. Near-Infrared Spectroscopy for Microalgae Studies: A Comprehensive Review of Applications and Outlooks. Algal Res. 2025, 89, 104074. [Google Scholar] [CrossRef]
- Ojaniemi, U.; Tamminen, A.; Syrjänen, J.; Barth, D. CFD Modeling of CO2 Fixation by Microalgae Cultivated in a Lab Scale Photobioreactor. Bioresour. Technol. 2025, 415, 131715. [Google Scholar] [CrossRef]
- Akinbuja, O.; Orta, S.V.; Boodhoo, K. Life Cycle Assessment of Microalgae-Assisted Microbial Fuel Cells. Int. J. Life Cycle Assess. 2025, 1–12. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Zhang, B.; Qiu, Q.; Wang, B.; Yang, H.; Ding, Y.; Wang, C. Pyrolysis of Microalgae: A Critical Review. Fuel Process. Technol. 2019, 186, 53–72. [Google Scholar] [CrossRef]
- Skjånes, K.; Rebours, C.; Lindblad, P. Potential for Green Microalgae to Produce Hydrogen, Pharmaceuticals and Other High Value Products in a Combined Process. Crit. Rev. Biotechnol. 2013, 33, 172–215. [Google Scholar] [CrossRef] [PubMed]
- Tsygankov, A.A.; Kosourov, S.N.; Tolstygina, I.V.; Ghirardi, M.L.; Seibert, M. Hydrogen Production by Sulfur-Deprived Chlamydomonas Reinhardtii under Photoautotrophic Conditions. Int. J. Hydrogen Energy 2006, 31, 1574–1584. [Google Scholar] [CrossRef]
- Hippler, M.; Khosravitabar, F. Light-Driven H2 Production in Chlamydomonas Reinhardtii: Lessons from Engineering of Photosynthesis. Plants 2024, 13, 2114. [Google Scholar] [CrossRef]
- Albuquerque, M.M.; De Bona Sartor, G.; Jose Martinez-Burgos, W.; Scapini, T.; Edwiges, T.; Soccol, C.R.; Bianchi, A.; Medeiros, P. Biohydrogen Produced via Dark Fermentation: A Review. Methane 2024, 3, 500–532. [Google Scholar] [CrossRef]
- Sanghvi, A.H.; Manjoo, A.; Rajput, P.; Mahajan, N.; Rajamohan, N.; Abrar, I. Advancements in Biohydrogen Production—A Comprehensive Review of Technologies, Lifecycle Analysis, and Future Scope. RSC Adv. 2024, 14, 36868–36885. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Markou, G.; Nerantzis, E. Microalgae for High-Value Compounds and Biofuels Production: A Review with Focus on Cultivation under Stress Conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Han, X.; He, L.; Jia, Y.; Yu, R.C. Fourier Transform Infrared Spectrometry Detection of Phaeodactylum Tricornutum Biomacromolecules in Response to Environmental Changes. ACS Omega 2023, 8, 702–708. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae Biorefinery: High Value Products Perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef]
- Pandey, S.; Narayanan, I.; Selvaraj, R.; Varadavenkatesan, T.; Vinayagam, R. Biodiesel Production from Microalgae: A Comprehensive Review on Influential Factors, Transesterification Processes, and Challenges. Fuel 2024, 367, 131547. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
- Levin, G.; Yasmin, M.; Liran, O.; Hanna, R.; Kleifeld, O.; Horev, G.; Wollman, F.A.; Schuster, G.; Nawrocki, W.J. Processes Independent of Nonphotochemical Quenching Protect a High-Light-Tolerant Desert Alga from Oxidative Stress. Plant Physiol. 2024, 197, 608. [Google Scholar] [CrossRef]
- Schulze, P.S.C.; Brindley, C.; Fernández, J.M.; Rautenberger, R.; Pereira, H.; Wijffels, R.H.; Kiron, V. Flashing Light Does Not Improve Photosynthetic Performance and Growth of Green Microalgae. Bioresour. Technol. Rep. 2020, 9, 100367. [Google Scholar] [CrossRef]
- Saccardo, A.; Porcelli, A.; Borella, L.; Sforza, E.; Bezzo, F. Model-Based Optimisation of Microalgae Growth under High-Intensity and High-Frequency Pulsed Light Conditions. J. Clean. Prod. 2024, 469, 143238. [Google Scholar] [CrossRef]
- Akca, M.S.; Kinaci, O.K.; Inanc, B. Improving Light Availability and Creating High-Frequency Light–Dark Cycles in Raceway Ponds through Vortex-Induced Vibrations for Microalgae Cultivation: A Fluid Dynamic Study. Bioprocess Biosyst. Eng. 2024, 47, 1863. [Google Scholar] [CrossRef]
- Giwa, A.; Adeyemi, I.; Dindi, A.; Lopez, C.G.B.; Lopresto, C.G.; Curcio, S.; Chakraborty, S. Techno-Economic Assessment of the Sustainability of an Integrated Biorefinery from Microalgae and Jatropha: A Review and Case Study. Renew. Sustain. Energy Rev. 2018, 88, 239–257. [Google Scholar] [CrossRef]
- Abate, R.; Oon, Y.S.; Oon, Y.L.; Bi, Y. Microalgae-Bacteria Nexus for Environmental Remediation and Renewable Energy Resources: Advances, Mechanisms and Biotechnological Applications. Heliyon 2024, 10, e31170. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Zhang, J.; Liu, B.; Xue, H.; Wu, L.; Li, Z. Knowledge Mapping of High-Rate Algal Ponds Research. Water 2023, 15, 1916. [Google Scholar] [CrossRef]
Scopus | ||||
---|---|---|---|---|
Rank | Author | H-Index | Total Citations | No. of Papers |
1st | Bernardo O | 9 | 364 | 9 |
2nd | Verma TN | 7 | 93 | 8 |
3rd | ChenY | 6 | 181 | 8 |
4th | Chen J | 5 | 104 | 7 |
5th | Pruvost J | 6 | 285 | 7 |
6th | Vargas JVC | 6 | 108 | 7 |
7th | Wijffels RH | 7 | 450 | 7 |
8th | Acién GG | 6 | 278 | 6 |
9th | Bellin Mariano AB | 5 | 98 | 6 |
10th | Cheng J | 4 | 102 | 6 |
Scopus | |||
---|---|---|---|
Rank | Journal Name | Number of Papers | Impact Factor SJR (2024) |
1st | Bioresource Technology | 46 | 2.395 |
2nd | Algal Research | 31 | 1.009 |
3rd | Energy | 13 | 2.211 |
4th | Renewable Energy | 13 | 2.080 |
5th | Biochemical Engineering Journal | 12 | 0.772 |
6th | Chemical Engineering Transactions | 12 | 0.257 |
7th | Energy Conversion and Management | 12 | 2.659 |
8th | Energies | 11 | 0.713 |
9th | Fuel | 9 | 1.614 |
10th | Biomass and Bioenergy | 8 | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Delgado, Á.D.; Rojas-Flores, S.; Alviz-Meza, A. Trends in Using Microalgae as a Green Energy Source: Conventional, Machine Learning, and Hybrid Modeling Methods. Processes 2025, 13, 3134. https://doi.org/10.3390/pr13103134
González-Delgado ÁD, Rojas-Flores S, Alviz-Meza A. Trends in Using Microalgae as a Green Energy Source: Conventional, Machine Learning, and Hybrid Modeling Methods. Processes. 2025; 13(10):3134. https://doi.org/10.3390/pr13103134
Chicago/Turabian StyleGonzález-Delgado, Ángel Darío, Segundo Rojas-Flores, and Anibal Alviz-Meza. 2025. "Trends in Using Microalgae as a Green Energy Source: Conventional, Machine Learning, and Hybrid Modeling Methods" Processes 13, no. 10: 3134. https://doi.org/10.3390/pr13103134
APA StyleGonzález-Delgado, Á. D., Rojas-Flores, S., & Alviz-Meza, A. (2025). Trends in Using Microalgae as a Green Energy Source: Conventional, Machine Learning, and Hybrid Modeling Methods. Processes, 13(10), 3134. https://doi.org/10.3390/pr13103134