Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power
Abstract
1. Introduction
2. Materials and Methods
2.1. Technical Variables Inputted on the HOMER Software
2.1.1. Electrical Loads
2.1.2. Solar Radiation
2.1.3. Wind Speeds
2.1.4. Wind Turbine System
2.1.5. PV System
2.1.6. Generator
2.1.7. Converter
2.1.8. Battery Bank
2.2. Economic Analysis
3. Results and Discussion
3.1. Optimization Results on Lanzarote, Fuerteventura and Gran Canaria
3.2. Pollution Avoided
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Instituto Canario de Estadística (ISTAC). Canarian Statistic Institute. 2023. Available online: http://www.gobiernodecanarias.org/istac (accessed on 5 June 2024).
- Avila, D.; Marichal, G.N.; Hernández, A.; San Luis, F. Chapter 2—Hybrid renewable energy systems for energy supply to autonomous desalination systems on Isolated Islands. In Design, Analysis, and Applications of Renewable Energy Systems; Azar, A.T., Kamal, N.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 23–51. [Google Scholar] [CrossRef]
- Sadhwani, J.J.; Álvarez, L.; Melián, N.; Sadhwani, J. The Canary Islands and its passion for water desalination. Desalination Water Treat. 2015, 55, 2340–2350. [Google Scholar] [CrossRef]
- Gils, H.C.; Simon, S. Carbon neutral archipelago-100% renewable energy supply for the Canary Islands. Appl. Energy 2017, 188, 342–355. [Google Scholar] [CrossRef]
- Padrón, I.; Avila, D.; Marichal, G.N.; Rodríguez, J.A. Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230. [Google Scholar] [CrossRef]
- González, A.; Pérez, J.C.; Díaz, J.P.; Expósito, F.J. Future projections of wind resource in a mountainous archipelago, Canary Islands. Renew. Energy 2017, 104, 120–128. [Google Scholar] [CrossRef]
- Hachim, D.M.; Al-Manea, A.; Al-Rbaihat, R.; Abed, Q.A.; Sadiq, M.; Homod, R.Z.; Alahmer, A. Enhancing the Performance of Photovoltaic Solar Cells Using a Hybrid Cooling Technique of Thermoelectric Generator and Heat Sink. J. Sol. Energy Eng. 2025, 147, 021011. [Google Scholar] [CrossRef]
- Al-Rbaihat, R. Sensitivity Analysis of a Hybrid PV-WT Hydrogen Production System via an Electrolyzer and Fuel Cell Using TRNSYS in Coastal Regions: A Case Study in Perth, Australia. Energies 2025, 18, 3108. [Google Scholar] [CrossRef]
- Avila, D.; Marichal, G.N.; Quiza, R.; San Luis, F. Prediction of Wave Energy Transformation Capability in Isolated Islands by Using the Monte Carlo Method. J. Mar. Sci. Eng. 2021, 9, 980. [Google Scholar] [CrossRef]
- Padrón, I.; García, M.; Marichal, G.; Avila, D. Wave energy potential of the Coast of El Hierro Island for the exploitation of a Wave Energy Converter (WEC). Sustainability 2022, 14, 12139. [Google Scholar] [CrossRef]
- Avila, D.; San Luis, F.; Hernández, Á.; Marichal, G.N. Optimal Arrangements of Renewable Energy Systems for Promoting the Decarbonization of Desalination Plants. J. Mar. Sci. Eng. 2024, 12, 1193. [Google Scholar] [CrossRef]
- HOMER Software (2.75), HOMER Energy. 2012. Available online: http://homerenergy.com/ (accessed on 5 February 2024).
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower Modeling System. 2006, pp. 379–417. Available online: http://www.pspb.org/e21/media/HOMERModelingInformation.pdf (accessed on 14 February 2024).
- Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Alphen, K.; Sark, W.; Hekkert, M.P. Renewable energy technologies in the Maldives—Determining the potential. Renew. Sustain. Energy Rev. 2007, 11, 1650–1674. [Google Scholar] [CrossRef]
- Demiroren, A.; Yilmaz, U. Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example. Renew. Sustain. Energy Rev. 2010, 14, 323–333. [Google Scholar] [CrossRef]
- Alam, M.; Denich, M. Assessment of renewable energy resources potential for electricity generation in Bangladesh. Renew. Sustain. Energy Rev. 2010, 4, 2401–2413. [Google Scholar] [CrossRef]
- Hoarcă, I.C.; Bizon, N.; Șorlei, I.S.; Thounthong, P. Sizing Design for a Hybrid Renewable Power System Using HOMER and iHOGA Simulators. Energies 2023, 16, 1926. [Google Scholar] [CrossRef]
- Atteya, A.I.; Ali, D. Benchmarking a Novel Particle Swarm Optimization Dynamic Model Versus HOMER in Optimally Sizing Grid-Integrated Hybrid PV–Hydrogen Energy Systems. Eng 2024, 5, 3239–3258. [Google Scholar] [CrossRef]
- Chisale, S.W.; Eliya, S.; Taulo, J. Optimization and design of hybrid power system using HOMER pro and integrated CRITIC-PROMETHEE II approaches. Greentech 2023, 1, 100005. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I.; Ahmad, F.; Shaahid, S.; Al-Shehri, A.; Bakhashwain, J.; Shash, A. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renew. Sustain. Energy Rev. 2007, 11, 635–653. [Google Scholar] [CrossRef]
- Žigman, D.; Tomiša, T.; Osman, K. Methodology Presentation for the Configuration Optimization of Hybrid Electrical Energy Systems. Energies 2023, 16, 2158. [Google Scholar] [CrossRef]
- Mariño, F.; Tibanlombo, V.; Medina, J.; Chamorro, W. Optimal Analysis of Microgrid with HOMER According to the Existing Renewable Resources in the Sector of El Aromo and Villonaco, Ecuador. Eng. Proc. 2023, 47, 3. [Google Scholar] [CrossRef]
- Ribó-Pérez, D.; Herraiz-Cañete, C.; Alfonso-Solar, D.; Vargas-Salgado, C.; Gómez-Navarro, T. Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER. Renew. Energy 2021, 174, 501–512. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software. Sol. Energy 2010, 84, 710–714. [Google Scholar] [CrossRef]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Feasibility analysis of stand-alone renewable energy supply options for a large hotel. Renew. Energy 2008, 33, 1475–1490. [Google Scholar] [CrossRef]
- Riayatsyah, T.M.I.; Geumpana, T.A.; Fattah, I.M.R.; Rizal, S.; Mahlia, T.M.I. Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid. Sustainability 2022, 14, 7735. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, S.; Yin, W.; Wu, C.; Ye, J.; Wu, Y.; Liu, L. HOMER-Based Multi-Scenario Collaborative Planning for Grid-Connected PV-Storage Microgrids with Electric Vehicles. Processes 2023, 11, 2408. [Google Scholar] [CrossRef]
- Ekren, O.; Canbaz, C.H.; Güvel, Ç.B. Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. J. Clean. Prod. 2021, 279, 123615. [Google Scholar] [CrossRef]
- Kassem, R.; Mahmoud, M.M.; Ibrahim, N.F.; Alkuhayli, A.; Khaled, U.; Beroual, A.; Saleeb, H. A Techno-Economic Environmental Feasibility Study of Residential Solar Photovoltaic/Biomass Power Generation for Rural Electrification: A Real Case Study. Sustainability 2024, 16, 2036. [Google Scholar] [CrossRef]
- Aziz, A.S.; Tajuddin, M.F.N.; Hussain, M.K.; Adzman, M.R.; Ghazali, N.H.; Ramli, M.A.M.; Khalil, T.E. A new optimization strategy for wind/diesel/battery hybrid energy system. Energy 2022, 239, 122458. [Google Scholar] [CrossRef]
- Sarker, S. Feasibility analysis of a renewable hybrid energy system with producer gas generator fulfilling remote household electricity demand in Southern Norway. Renew. Energy 2016, 87, 772–781. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ghasempour, R.; Astaraei, F.R.; Ahmadi, E.; Aligholian, A.; Toopshekan, A. Optimal planning of renewable energy resource for a residential house considering economic and reliability criteria. Electr. Power Energy Syst. 2018, 96, 261–273. [Google Scholar] [CrossRef]
- Subiela, V.J.; Banat, F. Region identification and site selection. In MEDA Water, ADIRA Handbook, A Guide to Autonomous System Concepts; European Union: Belgium, 2007; pp. 21–27. Available online: https://nmwaterconference.nmwrri.nmsu.edu/wp-content/uploads/2011/Relevant-Papers/2008_adira_handbook.pdf (accessed on 15 September 2025).
- Chenoweth, J. Minimum water requirement for social and economic development. Desalination 2007, 229, 245–256. [Google Scholar] [CrossRef]
- Micale, G.; Cipollina, A.; Rizzuti, L. Seawater desalination for freshwater production. In Seawater Desalination, Green Energy and Technology; Cipollina, A., Micale, G., Rizzuti, L., Eds.; Springer: Berlin, Germany, 2009; pp. 1–26. ISBN 978-3-642-01150-4. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2009; pp. 23–89. ISBN 978-0-470-01500-1. Available online: https://search.worldcat.org/es/title/wind-energyexplained%20theory-design%20and-application/oclc/431936159 (accessed on 15 July 2024).
- Southwest Windpower. Whisper 100 Owner’s Manual. Installation-Operation-Maintenance. Available online: https://www.technosun.com/descargas/SOUTHWEST-WHISPER-100-manual-EN.pdf (accessed on 19 July 2024).
- Southwest Windpower. Technical Specifications Whisper 100 and Whisper 500. Available online: https://www.technosun.com/descargas/SOUTHWEST-WINDPOWER-WHISPER100-WHISPER200-WHISPER500-ficha-EN.pdf (accessed on 19 July 2024).
- Enair, Rayse Energy. Small Wind Turbine Enair 30PRO. 2024. Available online: https://www.enair.es/en/small-wind-turbines/e30pro (accessed on 19 July 2024).
- Hina, F.; Palanisamy, K. Renewable systems and energy storages for hybrid systems. In Hybrid-Renewable Energy Systems in Microgrids, 1st ed.; Hina, F., Prabaharan, N., Palanisamy, K., Akhtar, K., Mekhilef, S., Justo, J., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 147–164. [Google Scholar]
- Dallavalle, E.; Cipolletta, M.; Casson, V.; Cozzani, V.; Zanuttigh, B. Towards green transition of touristic islands through hybrid renewable energy systems. A case study in Tenerife, Canary Islands. Renew. Energy 2021, 174, 426–443. [Google Scholar] [CrossRef]
- Mazorra, L.; Polo, J.; Vindel, J.M.; Oliver, A. Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty. Renew. Energy 2019, 135, 98–107. [Google Scholar] [CrossRef]
Device | Number of Devices | Power (W) | Daily Operation Time (h/day) | Daily Electrical Consumption (kWh/day) |
---|---|---|---|---|
Indoor lighting | 10 | 12 | 10 | 1.200 |
Outdoor lighting | 6 | 24 | 8 | 1.152 |
Ceiling fan | 2 | 55 | 10 | 1.100 |
Table fan | 3 | 40 | 10 | 1.200 |
Refrigerator | 1 | 300 | 24 | 7.200 |
TV | 2 | 200 | 6 | 2.400 |
Microwaves | 1 | 700 | 1 | 0.700 |
Electric cooktop | 1 | 4000 | 2 | 8.000 |
Washing machine | 1 | 1500 | 1 | 1.500 |
Other loads | one or more | 1000 | 1 | 1.000 |
Desalination plant | 1 | 210 | 24 | 5.040 |
Total | 27 | 7831 | 30.492 |
Meteorological Station | Coordinates (Latitude and Longitude) | Altitude (m) (Above Mean Sea Level) |
---|---|---|
Gran Canaria | Latitude: 27°55′21″ N Longitude: 15°23′22″ W | 24 |
Fuerteventura | Latitude: 28°26′41″ N Longitude: 13°51′47″ W | 25 |
Lanzarote | Latitude: 28°57′7″ N Longitude: 13°36′1″ W | 14 |
Technical Parameter | SW 200 | E30pro | SW500 |
---|---|---|---|
Rotor diameter (m) | 2.7 | 3.8 | 4.5 |
Nominal power (kW) | 1.0 | 1.9 | 3.0 |
Hub height (m) | 10 | 13 | 13 |
Cut-in wind speed (m/s) | 3.1 | 1.8 | 3.4 |
Survival wind speed (m/s) | 55 | 60 | 55 |
Rated power | 1000 watts at (11.6 m/s) | 1900 watts at (11.0 m/s) | 3000 watts at (10.5 m/s) |
Element | Size | I. Capital Cost (ICC) (USD) | Replacement Cost (RC) (USD) | O&M Cost (USD) | Lifetime |
---|---|---|---|---|---|
PV panels (PV) | 0–50 kW | USD 2500/kW | USD 2500/kW | 0.01xICCPV | 20 years |
Wind Turbines (WT) | WT-1.0 kW WT-2.5 kW WT-3.0 kW | USD 6000/unit USD 14,900/unit USD 14,900/unit | USD 3700/unit USD 11,000/unit USD 11,000/unit | 0.025xICCWind | 20 years |
Batteries (360 Ah/6 V) | (0–32) batt. | USD 350/unit | USD 350/unit | USD 8.00/year | 10 years |
Generator (DG) | 0–5.0 kW | USD 700/kW | USD 700/kW | USD 0.40/hour | 15,000 h |
Converter | 0–5.0 kW | USD 1000/kW | USD 1000/kW | USD 50/year | 20 years |
Island | PV (kW) | WT (Number), (Type) | Battery (Number) | Converter (kW) | DG (kW) | Diesel (L) | GEN (hrs.) |
---|---|---|---|---|---|---|---|
Lanzarote | 0 | 1—(E30pro) | 8 | 2.0 | 1.0 | 8 | 24 |
Fuerteventura | 0 | 1—(E30pro) | 8 | 2.0 | 1.0 | 18 | 57 |
Gran Canaria | 0 | 1—(E30pro) | 8 | 2.0 | 1.0 | 23 | 71 |
Island | Initial Capital (USD) | Operating Cost (USD/year) | Total NPC (USD) | COE (USD/kWh) |
---|---|---|---|---|
Lanzarote | 20,400 | 830 | 29,993 | 0.223 |
Fuerteventura | 20,400 | 869 | 30,372 | 0.227 |
Gran Canaria | 20,400 | 843 | 30,073 | 0.225 |
Proposed HRES | Pollutant Avoided | Emissions Avoided Lanzarote (kg/year) | Emissions Avoided Fuerteventura (kg/year) | Emissions Avoided Gran Canaria (kg/year) |
---|---|---|---|---|
One WT_E30pro Eight batteries One converter (2.0 kW) One D. generator (1.0 kW) | CO2 | 7244 | 7214 | 7204 |
SO2 | 15 | 14.5 | 14.5 | |
NOx | 160 | 159 | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila, D.; Hernández, Á.; Marichal, G.N. Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power. Processes 2025, 13, 3127. https://doi.org/10.3390/pr13103127
Avila D, Hernández Á, Marichal GN. Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power. Processes. 2025; 13(10):3127. https://doi.org/10.3390/pr13103127
Chicago/Turabian StyleAvila, Deivis, Ángela Hernández, and Graciliano Nicolás Marichal. 2025. "Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power" Processes 13, no. 10: 3127. https://doi.org/10.3390/pr13103127
APA StyleAvila, D., Hernández, Á., & Marichal, G. N. (2025). Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power. Processes, 13(10), 3127. https://doi.org/10.3390/pr13103127