Evaluation of the Efficiency of Encapsulation and Bioaccessibility of Polyphenol Microcapsules from Cocoa Pod Husks Using Different Techniques and Encapsulating Agents
Abstract
1. Introduction
2. Materials and Methods
2.1. Extraction and Characterization of Polyphenols
2.2. Encapsulation by Complex Coacervation (CC)
2.3. Encapsulation by Spray Drying (SD)
2.4. Quantification of Polyphenols in the Microcapsules and Surface Polyphenol Content
2.5. Encapsulation Evaluation
2.5.1. Encapsulation Yield
2.5.2. Encapsulation Efficiency
2.5.3. Loading Efficiency
2.6. Scanning Electron Microscopy (SEM)
2.7. Bioaccessibility of Microcapsules Through In Vitro Digestion
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Characterization of Polyphenols
3.2. Total Polyphenol Content, Antioxidant Capacity, and Identification of Catechins and Epicatechins
3.3. Encapsulation by Complex Coacervation (CC)
3.4. Encapsulation by Spray Drying (SD)
3.5. Scanning Electron Microscopy (SEM)
3.6. Bioaccessibility of the Microcapsules Through In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPH | Cocoa Pod Husk |
CC | Complex Coacervation |
SD | Spray Drying |
GA | Gum Arabic |
SA | Sodium Alginate |
C | Chitosan |
G | Gelatine |
EY | Encapsulation Yield |
EE | Encapsulation Efficiency |
LE | Loading Efficiency |
EA | Encapsulating Agent |
TPC | Total Polyphenol Content |
GAE | Gallic Acid Equivalents |
LPE | Lyophilised Polyphenol Extract |
ORAC | Oxygen Radical Absorbance Capacity |
SPC | Surface Polyphenol Content |
ET | Trolox Equivalents |
EPE | Encapsulated Polyphenol Extract |
EGCG | Epigallocatechin Gallate |
References
- Zehiroglu, C.; Sarikaya, S.B.O. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef]
- Quiñones, M.; Miguel, M.; Aleixandre, A. Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutr. Hosp. 2012, 25, 76–89. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y. Tea catechins and their applications as supplements and pharmaceutics. Pharmacol. Res. 2011, 64, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, N.; Sarıtaş, S.; Bechelany, M.; Karav, S. Polyphenols in Foods and Their Use in the Food Industry: Enhancing the Quality and Nutritional Value of Functional Foods. Int. J. Mol. Sci. 2025, 26, 5803. [Google Scholar] [CrossRef]
- Vázquez, A.; Ovando, I.; Adriano, L.; Betancur, D.; Salvador, M. Alcaloides y polifenoles del cacao, mecanismos que regulan su biosíntesis y sus implicaciones en el sabor y aroma. Arch. Latinoam. Nutr. 2016, 656, 239–254. Available online: http://ve.scielo.org/pdf/alan/v66n3/art10.pdf (accessed on 12 March 2024).
- Pico-Hernández, S.M.; Murillo-Méndez, C.J.; López-Giraldo, L.J. Extraction, separation, and evaluation of antioxidant effect of the different fractions of polyphenols from cocoa beans. Rev. Colomb. Quim. 2020, 49, 19–27. [Google Scholar] [CrossRef]
- Sotelo, A.; Alvis; Arrázola, G. Evaluación de epicatequina, teobromina y cafeína en cáscaras de cacao (Theobroma cacao L.). Rev. Colomb. Cienc. Hortícolasa 2015, 9, 124–134. Available online: https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/3751 (accessed on 15 March 2024). [CrossRef]
- Papillo, V.A.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Garino, C.; Coïsson, J.D.; Arlorio, M. Cocoa hulls polyphenols stabilized by microencapsulation as functional ingredient for bakery applications. Food Res. Int. 2019, 115, 511–518. [Google Scholar] [CrossRef]
- Toro-Uribe, S. Encapsulation of Antioxidants from Theobroma cacao L. for Food Applications: In vitro Bioaccessibility and Kinetic Release Profile. Ph.D. Thesis, Universidad Industrial de Santander, Bucaramanga, Colombia, 2018. Available online: https://noesis.uis.edu.co/handle/20.500.14071/9625 (accessed on 6 June 2024).
- Toledo, O.J.C.; Correa, L.Y.R.; Giraldo, L.J.L. Determinación y Ajuste de Parámetros Cinéticos de la Extracción de Polifenoles Totales a Partir de Cáscara de Cacao. Bachelor’s Thesis, Universidad Industrial de Santander, Bucaramanga, Colombia, 2014. Available online: https://noesis.uis.edu.co/handle/20.500.14071/29913 (accessed on 19 March 2025).
- Nguyen, V.T.; Tran, A.X.; Le, V.A.T. Microencapsulation of phenolic-enriched extract from cocoa pod husk (Theobroma cacao L.). Powder Technol. 2021, 386, 136–143. [Google Scholar] [CrossRef]
- Vámos-Vigyázó, L.; Haard, N.F. Polyphenol oxidases and peroxidases in fruits and vegetables. CRC Crit. Rev. Food Sci. Nutr. 1981, 15, 49–127. [Google Scholar] [CrossRef]
- Rios-Aguirre, S.; Gil-Garzón, M.A. Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: Una revisión. TecnoLógicas 2021, 24, e1836. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, Y.; Zhang, T.; Zang, J. Microencapsulation of Carvacrol by Complex Coacervation of Walnut Meal Protein Isolate and Gum Arabic: Preparation, Characterization and Bio-Functional Activity. Foods 2022, 11, 3382. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Terán-Figueroa, Y.; Espinosa-Solís, V.; Álvarez-Salas, C.; Saavedra-Leos, M.Z. Encapsulation of Active Ingredients in Food Industry by Spray-Drying and Nano Spray-Drying Technologies. Processes 2020, 8, 889. [Google Scholar] [CrossRef]
- Barba, M.G.M. Encapsulación de Compuestos Fenólicos de Vaccinium corymbosum a Través del Desarrollo de Matrices Biopoliméricas y su Efecto en la Modulación de la Microbiota Intestinal Humana. Ph.D. Thesis, Centro de Investigación y Asistencia en Tecnología y diseño del estado de Jalisco AC, Guadalajara, México, 2018. Available online: http://ciatej.repositorioinstitucional.mx/jspui/handle/1023/655 (accessed on 19 March 2025).
- Nori, M.P.; Favaro-Trindade, C.S.; de Alencar, S.M.; Thomazini, M.; de Camargo Balieiro, J.C.; Castillo, C.J.C. Microencapsulation of propolis extract by complex coacervation. LWT 2011, 44, 429–435. [Google Scholar] [CrossRef]
- Manzanarez-Tenorio, L.E.; Cruz, S.R.; Márquez-Ríos, E.; Ornelas-Paz, d.J.J. Microencapsulación de extractos de higo (Ficus carica) por coacervación compleja y evaluación de su capacidad antioxidante. Biotecnia 2020, 22, 70–77. [Google Scholar] [CrossRef]
- Siles-Sánchez, M.d.l.N.; Jaime, L.; Villalva, M.; Santoyo, S. Encapsulation of Marjoram Phenolic Compounds Using Chitosan to Improve Its Colon Delivery. Foods 2022, 11, 3657. [Google Scholar] [CrossRef]
- Lauro, M.R.; Crascì, L.; Giannone, V.; Ballistreri, G.; Fabroni, S.; Sansone, F.; Rapisarda, P.; Panico, A.M.; Puglisi, G. An alginate/cyclodextrin spray drying matrix to improve shelf life and antioxidant efficiency of a blood orange by-product extract rich in polyphenols: MMPs inhibition and antiglycation activity in dysmetabolic diseases. Oxid. Med. Cell. Longev. 2017, 2017, 2867630. [Google Scholar] [CrossRef] [PubMed]
- De Souza, V.B.; Thomazini, M.; Balieiro, J.C.D.C.; Fávaro-Trindade, C.S. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food Bioprod. Process. 2015, 93, 39–50. [Google Scholar] [CrossRef]
- Fernández, I.N.G.; Martínez, Á.M. Encapsulación de Antioxidantes Naturales Mediante Proceso Supercritical Anti Solvent (SAS). Master’s Thesis, Universidad de Valladolid, Valladolid, Spain, 2022. Available online: https://uvadoc.uva.es/bitstream/handle/10324/54920/TFM-I-2350.pdf?sequence=1&isAllowed=y (accessed on 4 March 2024).
- Ochoa, K.; Robles, P. Producción y Caracterización de Partículas Poliméricas Encapsulantes de Aceites Esenciales: Menta y Romero. Bachelor’s Thesis, Universidad Industrial de Santander, Bucaramanga, Colombia, 2020. Available online: https://noesis.uis.edu.co/handle/20.500.14071/40363 (accessed on 6 June 2024).
- Shinde, U.; Nagarsenker, M. Microencapsulación de eugenol mediante coacervación del complejo gelatina-alginato de sodio. Indian. J. Pharm. Sci. 2011, 73, 311–315. Available online: https://pubmed.ncbi.nlm.nih.gov/22457558/ (accessed on 6 June 2024).
- Mohamed, S.A.; Elsherbini, A.M.; Alrefaey, H.R.; Adelrahman, K.; Moustafa, A.; Egodawaththa, N.M.; Crawford, K.E.; Nesnas, N.; Sabra, S.A. Gum Arabic: A Commodity with Versatile Formulations and Applications. Nanomaterials 2025, 15, 290. [Google Scholar] [CrossRef]
- Barra, P.A.; Márquez, K.; Gil-Castell, O.; Mujica, J.; Ribes-Greus, A.; Faccini, M. Spray-Drying Performance and Thermal Stability of L-ascorbic Acid Microencapsulated with Sodium Alginate and Gum Arabic. Molecules 2019, 24, 2872. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Wadhwa, S.S.; Waterhouse, G.I.N. Spray-Drying Microencapsulation of Polyphenol Bioactives: A Comparative Study Using Different Natural Fibre Polymers as Encapsulants. Food Bioproc. Tech. 2013, 6, 2376–2388. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Grassia, M. Green Extraction of Polyphenols from Cocoa Shells and Microencapsulation to Produce a Functional Chocolate Bar. Ph.D. Thesis, Universitá Degli Studi Del Molise, Campobasso, Italy, 2020. Available online: https://iris.unimol.it/handle/11695/99047%0Ahttps://iris.unimol.it/bitstream/11695/99047/1/Tesi_M_Grassia.pdf (accessed on 12 June 2024).
- Soliman, T.N.; Mohammed, D.M.; El-Messery, T.M.; Elaaser, M.; Zaky, A.A.; Eun, J.-B.; Shim, J.-H.; El-Said, M.M. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl3-Induced Neuroinflammation in Rats. Front. Nutr. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Quiceno-Suarez, A.; Cadena-Chamorro, E.M.; Ciro-Velásquez, H.J.; Arango-Tobón, J.C. By-products of the cocoa agribusiness: High value-added materials based on their bromatological and chemical characterization. Rev. Fac. Nac. Agron. Medellin 2024, 77, 10585–10599. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Viera-Alcaide, I.; Morales-Sillero, A.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chem. 2018, 240, 831–839. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, W.; Jiang, X. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J. Agric. Food Chem. 2008, 56, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Y.; Holt, R.R.; Lazarus, S.A.; Ensunsa, J.L.; Hammerstone, J.F.; Schmitz, H.H.; Keen, C.L. Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J. Agric. Food Chem. 2002, 50, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.B.; Stuart, D.A.; Smith, N.L.; Lee, C.Y.; McHale, N.L.; Flanagan, J.A.; Ou, B.; Hurst, W.J. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J. Agric. Food Chem. 2006, 54, 4062–4068. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–774. [Google Scholar] [CrossRef] [PubMed]
- Sukri, N.; Putri, T.T.M.; Mahani; Nurhadi, B. Characteristics of propolis encapsulated with gelatin and sodium alginate by complex coacervation method. Int. J. Food Prop. 2023, 26, 696–707. [Google Scholar] [CrossRef]
- Goudie, K.J.; McCreath, S.J.; Parkinson, J.A.; Davidson, C.M.; Liggat, J.J. Investigation of the influence of pH on the properties and morphology of gelatin hydrogels. J. Polym. Sci. 2023, 61, 2316–2332. [Google Scholar] [CrossRef]
- Shinde, U.A.; Nagarsenker, M.S. Characterization of gelatin-sodium alginate complex coacervation system. Indian. J. Pharm. Sci. 2009, 71, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Muchiutti, G.S.; Novello, L.H.L.; Córsico, F.A.; Larrosa, V.J. Cápsulas de alginato para la protección de polifenoles presentes en el aceite esencial de orégano. Cienc. Docencia Tecnol. 2019, 30, 687. [Google Scholar] [CrossRef]
- Ralaivao, M.; Lucas, J.; Rocha, F.; Estevinho, B.N. Food-Grade Microencapsulation Systems to Improve Protection of the Epigallocatechin Gallate. Foods 2022, 11, 990. [Google Scholar] [CrossRef]
- Yeo, Y.; Park, K. Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems. Arch. Pharm. Res. 2004, 27, 1–12. [Google Scholar] [CrossRef]
- Shi, L.-E.; Li, Z.-H.; Li, D.-T.; Xu, M.; Chen, H.-Y.; Zhang, Z.-L.; Tang, Z.-X. Encapsulation of probiotic lactobacillus bulgaricus in alginate’milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 2013, 117, 99–104. [Google Scholar] [CrossRef]
- Jafari, S.; Karami, Z.; Shiekh, K.A.; Kijpatanasilp, I.; Worobo, R.W.; Assatarakul, K. Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients. Foods 2023, 12, 412. [Google Scholar] [CrossRef]
- Martinović, J.; Lukinac, J.; Jukić, M.; Ambrus, R.; Planinić, M.; Šelo, G.; Perković, G.; Bucić-Kojić, A. The Release of Grape Pomace Phenolics from Alginate-Based Microbeads during Simulated Digestion In Vitro: The Influence of Coatings and Drying Method. Gels 2023, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.C.M. Efecto del Ultrasonido en la Extracción y Nanoencapsulación de Polifenoles de Limón Persa. Master’s Thesis, Centro de Investigación y Asistencia en Tecnología y diseño del estado de Jalisco AC, Guadalajara, México, 2017. [Google Scholar]
- Machado, A.R.; Silva, P.M.P.; Vicente, A.A.; Souza-Soares, L.A.; Pinheiro, A.C.; Cerqueira, M.A. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers 2022, 14, 4759. [Google Scholar] [CrossRef] [PubMed]
- Passannanti, F.; Nigro, F.; Gallo, M.; Tornatore, F.; Frasso, A.; Saccone, G.; Budelli, A.; Barone, M.V.; Nigro, R. In vitro dynamic model simulating the digestive tract of 6-month-old infants. PLoS ONE 2017, 12, e0189807. [Google Scholar] [CrossRef]
- Nadia, J.; Roy, D.; Montoya, C.A.; Singh, H.; Acevedo-Fani, A.; Bornhorst, G.M. A proposed framework to establish in vitro—In vivo relationships using gastric digestion models for food research. Food Funct. 2024, 15, 10233–10261. [Google Scholar] [CrossRef]
- Alegría, A.; Garcia-Llatas, G.; Cilla, A. Static Digestion Models: General Introduction. In The Impact of Food Bioactives on Health; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–12. [Google Scholar] [CrossRef]
- Di Stasio, L.; De Caro, S.; Marulo, S.; Ferranti, P.; Picariello, G.; Mamone, G. Impact of porcine brush border membrane enzymes on INFOGEST in vitro digestion model: A step forward to mimic the small intestinal phase. Food Res. Int. 2024, 197, 115300. [Google Scholar] [CrossRef]
- Altin, G.; Gültekin-Özgüven, M.; Ozcelik, B. Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. J. Food Eng. 2018, 223, 91–98. [Google Scholar] [CrossRef]
- Silva, I.B.; Muñoz, J.B.; Castillo, R.O. Biodisponibilidad y Bioaccesibilidad de Polifenoles y Flavonoides. Bachelor’s Thesis, Universidad de Talca, Talca, Chile, 2020. Available online: https://repositorioslatinoamericanos.uchile.cl/handle/2250/4433173 (accessed on 17 June 2024).
- Sassi, C.B.; Marcet, I.; Rendueles, M.; Díaz, M.; Fattouch, S. Egg yolk protein as a novel wall material used together with gum Arabic to encapsulate polyphenols extracted from Phoenix dactylifera L pits. LWT 2020, 131, 109778. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Borompichaichartkul, C.; Iwamoto, S. Bioaccessibility and antioxidant activity of phenolic acids, flavonoids, and anthocyanins of encapsulated Thai rice bran extracts during in vitro gastrointestinal digestion. Food Chem. 2021, 361, 130161. [Google Scholar] [CrossRef] [PubMed]
Extraction Conditions | Treated Pod Husk [g] | Lyophilised Polyphenol Extract [g] | Yield [g LPE/g] |
---|---|---|---|
1/30 S/S, 75% E/W, T 60 °C | 1440 | 244.836 | 17% ± 1% |
Analysis | Mean * | Coefficient of Variation |
---|---|---|
Total Polyphenol Content [mgGAE/g LPE] * | 90.48 ± 12.87 | 14.23% |
Antioxidant Capacity (ORAC) [µmolTE/g LPE] * | 2224.06 ± 491.91 | 22.12% |
HPLC UV-Vis Catechin [mg/g LPE] | 0.56 ± 0.25 | 43.87% |
HPLC UV-Vis Epicatechin [mg/g LPE] | 3.78 ± 1.43 | 37.77% |
TPC * [mgGAE/g EPE] | SPC * [mgGAE/g EPE] | EY (%) 1 | EE (%) 1 | LE (%) 1 | |
---|---|---|---|---|---|
GA-G | 13.472 | 0.940 | 75.54 a | 93.02 a | 33.28 a |
13.038 | 0.879 | 78.00 a | 93.26 a | 32.20 a | |
13.075 | 0.992 | 60.09 a | 92.41 a | 32.29 a | |
13.195 ± 0.24 | 0.937 ± 0.06 | 71.210 ± 9.71 | 92.900 ± 0.44 | 32.59 ± 0.66 | |
SA-G | 10.810 | 3.156 | 67.83 a | 70.80 a | 28.68 a |
16.485 | 2.616 | 68.60 a | 84.13 a | 43.74 a | |
14.482 | 2.886 | 68.22 a | 80.07 a | 38.42 a | |
13.926 ± 2.88 | 2.886 ± 0.27 | 68.220 ± 0.39 | 78.334 ± 6.83 | 36.946 ± 7.63 |
Relation (E:EA) | TPC * | SPC * | EY (%) 1 | EE (%) 1 | LE (%) 1 |
---|---|---|---|---|---|
Gum Arabic | |||||
R1 1:3 | 12.691 | 2.778 | 62.15 ± 1.80 ab | 79.22 ± 1.56 a | 34.77 ± 1.15 a |
12.618 | 2.483 | ||||
R2 1:7 | 3.300 | 0.701 | 63.63 ± 1.56 a | 78.59 ± 0.22 a | 18.99 ± 1.06 d |
3.448 | 0.743 | ||||
R3 1:11 | 3.133 | 0.869 | 63.67 ± 1.60 a | 77.94 ± 8.02 a | 25.75 ± 1.66 b |
2.963 | 0.486 | ||||
Sodium Alginate | |||||
R1 1:1 | 16.772 | 2.641 | 45.33 ± 1.87 c | 81.16 ± 4.37 a | 17.17 ± 1.22 d |
17.487 | 3.834 | ||||
R2 1:2 | 12.896 | 3.023 | 47.88 ± 0.21 bc | 75.54 ± 1.44 a | 20.11 ± 0.60 cd |
12.442 | 3.170 | ||||
R3 1:3 | 12.332 | 1.619 | 50.40 ± 9.44 abc | 86.81 ± 0.08 a | 25.15 ± 1.85 cb |
10.485 | 1.389 | ||||
Chitosan | |||||
R1 1:1 | 8.531 | 0.856 | 45.75 ± 3.25 c | 89.38 ± 0.84 a | 9.50 ± 1.85 e |
10.182 | 1.142 | ||||
R2 1:2 | 4.965 | 1.907 | 54.15 ± 5.16 abc | 73.87 ± 17.37 a | 9.06 ± 1.06 ef |
5.117 | 0.708 | ||||
R3 1:3 | 1.511 | 0.306 | 52.38 ± 3.61 abc | 81.68 ± 2.70 a | 4.14 ± 1.14 f |
2.036 | 0.334 |
Sample | Phase | Polyphenols Released [mgGAE/g EPE] * | Bioaccessibility (%) 1 |
---|---|---|---|
Freeze-dried Extract (Control) | Buccal | 9.1819 ± 1.00 | 10.15 ± 1.10 |
Gastric | 8.6270 ± 0.38 | 9.53 ± 0.42 | |
Intestinal | 5.8006 ± 1.46 | 6.41 ± 1.61 | |
GA-G CC | Gastric | 8.5865 ± 0.14 | 65.07 ± 1.02 a |
Intestinal | 5.5097 ± 0.61 | 41.76 ± 4.63 bc | |
SA-G CC | Gastric | 2.0867 ± 0.34 | 15.01 ± 2.47 c |
Intestinal | 3.8164 ± 1.47 | 27.45 ± 1.25 c | |
GA SD | Gastric | 5.9513 ± 0.71 | 47.03 ± 5.60 ab |
Intestinal | 9.6873 ± 0.65 | 76.55 ± 5.10 a | |
SA SD | Intestinal | 6.7141 ± 2.62 | 58.85 ± 8.54 ab |
C SD | Gastric | 3.1138 ± 0.80 | 33.28 ± 8.54 cb |
Intestinal | 6.0245 ± 0.24 | 64.39 ± 2.53 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Morales, A.N.; López-Giraldo, L.J.; Sogamoso González, E.; Moscote Chinchilla, Y. Evaluation of the Efficiency of Encapsulation and Bioaccessibility of Polyphenol Microcapsules from Cocoa Pod Husks Using Different Techniques and Encapsulating Agents. Processes 2025, 13, 3094. https://doi.org/10.3390/pr13103094
González Morales AN, López-Giraldo LJ, Sogamoso González E, Moscote Chinchilla Y. Evaluation of the Efficiency of Encapsulation and Bioaccessibility of Polyphenol Microcapsules from Cocoa Pod Husks Using Different Techniques and Encapsulating Agents. Processes. 2025; 13(10):3094. https://doi.org/10.3390/pr13103094
Chicago/Turabian StyleGonzález Morales, Astrid Natalia, Luis Javier López-Giraldo, Erika Sogamoso González, and Yaiza Moscote Chinchilla. 2025. "Evaluation of the Efficiency of Encapsulation and Bioaccessibility of Polyphenol Microcapsules from Cocoa Pod Husks Using Different Techniques and Encapsulating Agents" Processes 13, no. 10: 3094. https://doi.org/10.3390/pr13103094
APA StyleGonzález Morales, A. N., López-Giraldo, L. J., Sogamoso González, E., & Moscote Chinchilla, Y. (2025). Evaluation of the Efficiency of Encapsulation and Bioaccessibility of Polyphenol Microcapsules from Cocoa Pod Husks Using Different Techniques and Encapsulating Agents. Processes, 13(10), 3094. https://doi.org/10.3390/pr13103094