Development of Biodegradable Straws Using Spent Coffee Grounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Biodegradable Straws
2.2. Extraction Using Ethanol–Water (1:1) Solvent
2.3. Determination of Total Polyphenol Content
2.4. Determination of Antioxidant Activity by FRAP (Ferric Reducing Antioxidant Power) Method
2.5. Determination of Antioxidant Activity by ABTS (2.2′-Azinobis-(3-Ethylbenzthiazoline-6-Sulfonic Acid)
2.6. Determination of Antioxidant Capacity by CUPRAC (Copper Ion-Reducing Antioxidant Capacity)
2.7. Determination of Flavonoids
2.8. Texture of Biodegradable Straws
2.9. Water Content and Solubility
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Properties of Experimentally Produced Straws
3.2. Textural Properties of Experimentally Produced Straws
3.3. Water Solubility of Experimentally Produced Straws
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roy, P.; Ashton, L.; Wang, T.; Corradini, M.G.; Fraser, E.D.G.; Thimmanagari, M.; Tiessan, M.; Bali, A.; Saharan, K.M.; Mohanty, A.K.; et al. Evolution of drinking straws and their environmental, economic and societal implications. J. Clean. Prod. 2021, 316, 128234. [Google Scholar] [CrossRef]
- Herberz, T.; Barlow, C.Y.; Finkbeiner, M. Sustainability assessment of a single-use plastics ban. Sustainability 2020, 12, 3746. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, Y.; Zhao, H.; Lv, Y.; Huo, L. Multidimensional evaluation for environment impacts of plastic straws and alternatives based on life cycle assessment. J. Clean. Prod. 2023, 404, 136716. [Google Scholar] [CrossRef]
- Qiu, N.; Sha, M.; Xu, X. Evaluation and future development direction of paper straw and plastic straw. IOP Conf. Ser. Earth Environ. Sci. 2022, 1011, 012029. [Google Scholar] [CrossRef]
- Rai, R.; Ranjan, R.; Kant, C.; Dhar, P. Biodegradable, eco-friendly, and hydrophobic drinking straws based on delignified phosphorylated bamboo-gelatin composites. Chem. Eng. J. 2023, 466, 144047. [Google Scholar] [CrossRef]
- Baweja, R.; Gautam, S. Environment application of natural materials. In Calcium-Based Materials; CRC Press: Boca Raton, FL, USA, 2024; pp. 106–122. [Google Scholar] [CrossRef]
- Luan, Y.; Huang, B.; Chen, L.; Wang, X.; Ma, Y.; Yin, M.; Song, Y.; Liu, H.; Ma, X.; Zhang, X.; et al. High-performance, low-cost, chemical-free, and reusable bamboo drinking straw: An all-natural substitute for plastic straws. Ind. Crops Prod. 2023, 200, 116829. [Google Scholar] [CrossRef]
- Yang, H.-B.; Liu, Z.-X.; Yin, C.-H.; Han, Z.-M.; Guan, Q.-F.; Zhao, Y.-X.; Ling, Z.-C.; Liu, H.-C.; Yang, K.-P.; Sun, W.-B.; et al. Edible, ultrastrong, and microplastic-free bacterial cellulose-based straws by biosynthesis. Adv. Funct. Mater. 2022, 32, 2111713. [Google Scholar] [CrossRef]
- Wang, K.; Sun, S.; Xie, J.; Guo, L.; Cui, B.; Zou, F. Strength, pliability, and hydrophobicity of mung bean starch straws: Orientation change caused by annealing time. J. Food Sci. 2024, 89, 7819–7830. [Google Scholar] [CrossRef] [PubMed]
- bin Ahmad Shamsuddin, D.M.; Chew, B.C.; Shin, L.H. Quality function deployment for bioplastics adoption in Malaysian industry. J. Technol. Manag. Bus. 2015, 2. [Google Scholar]
- Zhou, X.; Yi, C.; Deng, D. Sustainable development strategy of beverage straws for environmental load reduction. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 012041. [Google Scholar] [CrossRef]
- Gutierrez, J.-N.; Royals, A.-W.; Jameel, H.; Venditti, R.-A.; Pal, L. Evaluation of paper straws versus plastic straws: Development of a methodology for testing and understanding challenges for paper straws. BioResources 2019, 14, 8345–8363. [Google Scholar] [CrossRef]
- Alvarado, M.-C.; Polongasa, S.-G.-N.; Sanchez, P.-D.-C. A preliminary evaluation on the development of edible drinking straw from Guso (Eucheuma cottonii) seaweeds. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2023, 9, 51–58. [Google Scholar] [CrossRef]
- Li, H.; Su, Q.Z.; Liang, J.; Miao, H.; Jiang, Z.; Wu, S.; Dong, B.; Xie, C.; Li, D.; Ma, T.; et al. Potential safety concerns of volatile constituents released from coffee-ground-blended single-use biodegradable drinking straws: A chemical space perspective. J. Hazard. Mater. 2024, 467, 133663. [Google Scholar] [CrossRef] [PubMed]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Ong, P.J.; Leow, Y.; Soo, X.Y.D.; Chua, M.H.; Ni, X.; Suwardi, A.; Tan, C.K.I.; Zheng, R.; Wei, F.; Xu, J.; et al. Valorization of spent coffee grounds: A sustainable resource for bio-based phase change materials for thermal energy storage. Waste Manag. 2023, 157, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Tomadoni, B.; Cassani, L.; Ponce, A.; Moreira, M.R.; Aüero, M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-Food Sci. Technol. 2016, 72, 475–484. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Handique, J.G.; Boruah, M.P.; Kalita, D. Antioxidant activities and total phenolic and flavonoid contents in three indigenous medicinal vegetables of north-east India. Nat. Prod. Commun. 2012, 7, 1934578X1200700815. [Google Scholar] [CrossRef]
- Giménez, B.; Aleán, A.; Montero, P.; Gómez-Guillén, M.C. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem. 2009, 114, 976–983. [Google Scholar] [CrossRef]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive compounds and antioxidant activity from spent coffee grounds as a powerful approach for its valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef]
- Panusa, A.; Zuorro, A.; Lavecchia, R.; Marrosu, G.; Petrucci, R. Recovery of natural antioxidants from spent coffee grounds. J. Agric. Food Chem. 2013, 61, 4162–4168. [Google Scholar] [CrossRef] [PubMed]
- Ardhani, F.A.K.; Safithri, M.; Tarman, K.; Husnawati; Setyaningsi, I.; Meyia. Antioxidant activity of collagen from skin of parang-parang fish (Chirocentrus dorab) using DPPH and CUPRAC methods. IOP Conf. Ser. Earth Environ. Sci. 2019, 291, 012032. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef]
- Drago, E.; Pettinato, M.; Campardelli, R.; Firpo, G.; Lertora, E.; Perego, P. Zein and spent coffee grounds extract as a green combination for sustainable food active packaging production: An investigation on the effects of the production processes. Appl. Sci. 2022, 12, 11311. [Google Scholar] [CrossRef]
- Pyrzynska, K. Spent coffee grounds as a source of chlorogenic acid. Molecules 2025, 30, 613. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tao, H.; Tan, C.; Yuan, F.; Guo, L.; Cui, B.; Zhu, Y.; Gao, S.; Wu, Z.; Zou, F.; et al. Effects of biomass additives on mechanical strength and water resistance of corn starch straws. Ind. Crops Prod. 2023, 205, 117584. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Cerqueira, M.A.; Teixeira, J.A.; Mussatto, S.I. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. Int. J. Biol. Macromol. 2018, 106, 647–655. [Google Scholar] [CrossRef]
- Mäder, G.; Rüegg, N.; Tschichold, T.; Yildirim, S. Utilizing spent coffee grounds as sustainable fillers in biopolymer composites: Influence of particle size and content. Sustain. Food Technol. 2025, 3, 1151–1163. [Google Scholar] [CrossRef]
- de Freitas, V.; Mateus, N. Protein/polyphenol interactions: Past and present contributions. Mechanisms of astringency perception. Curr. Org. Chem. 2012, 16, 724–746. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Zhang, T.; Teng, B. A High-Performance Food Package Material Prepared by the Synergistic Crosslinking of Gelatin with Polyphenol–Titanium Complexes. Antioxidants 2024, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Dissanayaka, C.S. Phenolic-protein interactions: Insight from in-silico analyses–a review. Food Prod. Process. Nutr. 2023, 5, 2. [Google Scholar] [CrossRef]
Sample Name | Sample Description |
---|---|
Control—rice starch | 1.25 g rice starch + 5 g pork gelatine + 25 mL distilled water |
Rice starch + SCG | 0.5 g rice starch + 0.75 g used coffee grounds + 5 g pork gelatine + 25 mL distilled water |
Control—potato starch | 1.25 g potato starch + 5 g pork gelatine + 25 mL distilled water |
Potato starch + SCG | 0.5 g potato starch + 0.75 g used coffee grounds + 5 g pork gelatine + 25 mL distilled water |
Control—corn starch | 1.25 g corn starch + 5 g pork gelatine + 25 mL distilled water |
Corn starch + SCG | 0.5 g corn starch + 0.75 g used coffee grounds + 5 g pork gelatine + 25 mL distilled water |
FRAP (μmol/g) | ABTS (%) | Total Amount of Polyphenols (mg/mL) | CUPRAC (μmol/g) | Flavonoids (mg/g) | |
---|---|---|---|---|---|
Control—rice starch | 6.08 ± 0.71 a* | 0 ± 0 | 4.66 ± 0.27 a | 59.09 ± 4.80 a | 1.22 ± 0.45 a |
Rice starch + SCG | 12.48 ± 0.28 d | 1.51 ± 0.18 a | 6.22 ± 0.54 bc | 110.71 ± 4.49 c | 1.81 ± 0.29 c |
Control—potato starch | 5.51 ± 0.12 ca | 0 ± 0 | 6.99 ± 2.22 | 69.40 ± 4.47 d | 0.58 ± 0.17 d |
Potato starch + SCG | 10.43 ± 0.14 e | 1.21 ± 0 c | 6.61 ± 0.41 c | 89.40 ± 12.21 bd | 0.66 ± 0.06 e |
Control—corn starch | 4.18 ± 0.01 f | 0.35 ± 0.27 b | 5.23 ± 0.70 ab | 42.00 ± 7.59 e | 0 ± 0 |
Corn starch + SCG | 9.42 ± 0.07 b | 1.40 ± 0.03 ca | 5.66 ± 0.86 | 49.62 ± 0.53 ef | 0.36 ± 0.01 bd |
Texture | Hardness (g) | Fracturability (mm) |
---|---|---|
Plastic straw | 254.64 ± 12.51 a* | 3.54 ± 0.28 a |
Paper straw | 2421.99 ± 244.49 c | 29.04 ± 0.49 b |
Corn starch + SCG | 3171.13 ± 59.9 | 4.79 ± 0.18 |
Potato starch + SCG | 5637.2 ± 366.79 | 2.44 ± 1.34 |
Rice starch + SCG | 11500.6 ± 863.95 b | 4.35 ± 1.42 c |
Texture | Compression (kN/m) |
---|---|
Plastic straw | 0.3 ± 0.038 a* |
Paper straw | 0.719 ± 0.036 b |
Corn starch + SCG | 0.749 ± 0.23 |
Potato starch + SCG | 0.650 ± 0.231 |
Rice starch + SCG | 0.748 ± 0.302 |
Water Content (%) | Distilled Water | Seawater | |
---|---|---|---|
Control—rice starch | 12.55 ± 0.84 | Dissolved after 24 h | Dissolved after 24 h |
Rice starch + SPC | 11.87 ± 0.74 | Dissolved after 24 h | Dissolved after 24 h |
Control—potato starch | 13.43 ± 2.50 | Dissolved after 24 h | Dissolved after 24 h |
Potato starch + SPC | 16.30 ± 2.30 | Dissolved after 24 h | Dissolved after 24 h |
Control—corn starch | 12.88 ± 0.71 | Dissolved after 24 h | Dissolved after 24 h |
Corn starch + SPC | 12.09 ± 1.68 | Dissolved after 24 h | Dissolved after 24 h |
Sample | Beverage | Color | Texture | Taste | Flavor Impact | Usability | Taste Comment |
---|---|---|---|---|---|---|---|
Rice starch + SCG | Iced coffee | 3.4 | 3.1 | 3.0 | 2.9 | 3.0 | Slight change, acceptable |
Rice starch + SCG | Espresso orange | 3.7 | 3.4 | 2.9 | 3.4 | 3.0 | Slight change, acceptable |
Rice starch + SCG | Espresso tonic | 2.3 | 3.3 | 3.1 | 3.1 | 3.1 | Slight change, acceptable |
Potato starch + SCG | Iced coffee | 3.3 | 3.1 | 2.8 | 3.1 | 2.8 | Slight change, acceptable |
Potato starch + SCG | Espresso orange | 3.8 | 3.6 | 2.8 | 2.9 | 3.0 | Slight change, acceptable |
Potato starch + SCG | Espresso tonic | 3.9 | 3.6 | 3.3 | 2.8 | 2.9 | Slight change, acceptable |
Corn starch + SCG | Iced coffee | 3.6 | 3.4 | 2.6 | 2.9 | 2.8 | Slight change, acceptable |
Corn starch + SCG | Espresso orange | 3.6 | 3.4 | 2.7 | 2.8 | 3.0 | Slight change, acceptable |
Corn starch + SCG | Espresso tonic | 3.6 | 3.6 | 2.7 | 2.7 | 3.3 | Slight change, acceptable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dordevic, D.; Danilovic, B.; Cvetković, K.; Zelenka, L.; Kotianova, D.; Dordevic, S. Development of Biodegradable Straws Using Spent Coffee Grounds. Processes 2025, 13, 3055. https://doi.org/10.3390/pr13103055
Dordevic D, Danilovic B, Cvetković K, Zelenka L, Kotianova D, Dordevic S. Development of Biodegradable Straws Using Spent Coffee Grounds. Processes. 2025; 13(10):3055. https://doi.org/10.3390/pr13103055
Chicago/Turabian StyleDordevic, Dani, Bojana Danilovic, Kristina Cvetković, Lena Zelenka, Dominika Kotianova, and Simona Dordevic. 2025. "Development of Biodegradable Straws Using Spent Coffee Grounds" Processes 13, no. 10: 3055. https://doi.org/10.3390/pr13103055
APA StyleDordevic, D., Danilovic, B., Cvetković, K., Zelenka, L., Kotianova, D., & Dordevic, S. (2025). Development of Biodegradable Straws Using Spent Coffee Grounds. Processes, 13(10), 3055. https://doi.org/10.3390/pr13103055