Removal of Primamycin La from Milk Sample Using ZnCl2-Activated Biochar Prepared from Bean Plant as Adsorbent: Kinetic and Equilibrium Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.1.1. Preparation of PvBC and PvBCZn Biochars
2.1.2. Characterization of Biochar and Activated Biochar
2.2. Adsorption Experiments
2.3. Moisture Content, Water Solubility, and Swelling Behavior
2.4. Antimicrobial Activity
3. Results and Discussion
3.1. FTIR Spectra and X-Ray Diffraction of Both PvBC and PvBCZn
3.2. Nitrogen Gas Adsorption/Desorption Isotherm of Both PvBC and PvBCZn
3.3. Scanning Electron Microscopy–Energy Dispersive X-Ray Spectrometry
3.4. Thermal Analysis of Both PvBC and PvBCZn
3.5. Moisture Content, Water Solubility and Swelling Behavior of Both PvBC and PvBCZn
3.6. Antimicrobial Activity Results
3.7. Adsorption Studies of Primamycin La
3.8. Adsorption Isotherms and Kinetics
- (a)
- Oxytetracycline can create electrostatic attraction with Zn ions on the BC surface. Zinc ions are positively charged and can interact with the negative groups of oxytetracycline.
- (b)
- Zn ions can be replaced with metallic ions or other cations on the BC surface. This can allow for the adsorption of oxytetracycline on the surface.
- (c)
- The aromatic rings of oxytetracycline can perform the π-π stacking interactions with organic compounds on the BC surface.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girma, K.; Tilahun, Z.; Haimanot, D. Review on milk safety with emphasis on ıts public health. World J. Dairy Food Sci. 2014, 9, 166–183. [Google Scholar] [CrossRef]
- Ruhí, A.; Acuña, V.; Barceló, D.; Huerta, B.; Mor, J.R.; Rodríguez-Mozaz, S.; Sabater, S. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Sci. Total Environ. 2016, 540, 250–259. [Google Scholar] [CrossRef]
- Barbooti, M.M.; Su, H.; Punamiya, P.; Sarkar, D. Oxytetracycline sorption onto Iraqi montmorillonite. Int. J. Environ. Sci. Technol. 2014, 11, 69–76. [Google Scholar] [CrossRef]
- Rakshit, S.; Sarkar, D.; Punamiya, P.; Datta, R. Kinetics of oxytetracycline sorption on magnetite nanoparticles. Int. J. Environ. Sci. Technol. 2014, 11, 1207–1214. [Google Scholar] [CrossRef]
- Fu, B.; Ge, C.; Yue, L.; Luo, J.; Feng, D.; Deng, H.; Yu, H. Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. BioResources 2016, 11, 9017–9035. [Google Scholar] [CrossRef]
- Aguilar, J.F.F.; Miranda, J.M.; Rodriguez, J.A.; Paez-Hernandez, M.E.; Ibarra, I.S. Selective removal of tetracycline residue in milk samples using a molecularly imprinted polymer. J. Polym. Res. 2020, 27, 176. [Google Scholar] [CrossRef]
- Abbood, N.S.; Ali, N.S.; Khader, E.H.; Majdi, H.S.; Albayati, T.M.; Saady, N.M.C. Photocatalytic degradation of cefotaxime pharmaceutical compounds onto a modified nanocatalyst. Res. Chem. Intermed. 2023, 49, 43–56. [Google Scholar] [CrossRef]
- Ding, C.; Zhu, Q.; Yang, B.; Petropoulos, E.; Xue, L.; Feng, Y.; He, S.; Yang, L. Efficient photocatalysis of tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C3N4 composite under visible light: Process and mechanisms. J. Environ. Sci. 2023, 126, 249–262. [Google Scholar] [CrossRef]
- Tripathy, P.; Prakash, O.; Sharma, A.; Panchal, D.; Pal, S. Chapter 7—Antibiotics in wastewater: Perspective of biological treatment processes. In Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources; Academic Press: Cambridge, MA, USA, 2023; pp. 159–177. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef]
- Bosio, M.; Souza-Chaves, B.M.; Saggioro, E.M.; Bassin, J.P.; Dezotti, M.W.C.; Quinta-Ferreira, M.E.; Quinta-Ferreira, R.M. Electrochemical degradation of psychotropic pharmaceutical compounds from municipal wastewater and neurotoxicity evaluations. Environ. Sci. Pollut. Res. 2021, 28, 23958–23974. [Google Scholar] [CrossRef] [PubMed]
- García-Espinoza, J.D.; Nacheva, P.M. Degradation of pharmaceutical compounds in water by oxygenated electrochemical oxidation: Parametric optimization, kinetic studies and toxicity assessment. Sci. Total Environ. 2019, 691, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Klatt, M.; Beyer, F.; Einfeldt, J. Hospital wastewater treatment and the role of membrane filtration—Removal of micropollutants and pathogens: A review. Water Sci. Technol. 2022, 86, 2213–2232. [Google Scholar] [CrossRef]
- Nadour, M.; Boukraa, F.; Benaboura, A. Removal of Diclofenac, Paracetamol and Metronidazole using a carbon-polymeric membrane. J. Environ. Chem. Eng. 2019, 7, 103080. [Google Scholar] [CrossRef]
- Camargo-Perea, A.L.; Serna-Galvis, E.A.; Lee, J.; Torres-Palma, R.A. Understanding the effects of mineral water matrix on degradation of several pharmaceuticals by ultrasound: Influence of chemical structure and concentration of the pollutants. Ultrason. Sonochem. 2021, 73, 105500. [Google Scholar] [CrossRef]
- Ghanbari, F.; Hassani, A.; Wacławek, S.; Wang, Z.; Matyszczak, G.; Lin, K.Y.A.; Dolatabadi, M. Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: Key operating parameters, mineralization and toxicity assessment. Sep. Purif. Technol. 2021, 266, 118533. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Oturan, N.; Raffy, S.; Cretin, M.; Causserand, C.; Oturan, M.A. Efficiency of plasma elaborated sub-stoichiometric titanium oxide (Ti4O7) ceramic electrode for advanced electrochemical degradation of paracetamol in different electrolyte media. Sep. Purif. Technol. 2019, 208, 142–152. [Google Scholar] [CrossRef]
- Yun, W.C.; Lin, K.Y.A.; Tong, W.C.; Lin, Y.F.; Du, Y. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337. [Google Scholar] [CrossRef]
- Şahin, M.; Arslan, Y. Adsorptive and oxidative removal of naproxen and diclofenac using Ag NPs, Cu NPs and Ag/Cu NPs. Res. Chem. Intermed. 2023, 8, 3627–3643. [Google Scholar] [CrossRef]
- Şahin, M.; Arslan, Y.; Tomul, F. Removal of naproxen and diclofenac using magnetic nanoparticles/nanocomposites. Res. Chem. Intermed. 2022, 48, 5209–5226. [Google Scholar] [CrossRef]
- Caicedo, D.F.; Reis, G.S.D.; Lima, E.C.; de Brum, I.A.S.; Thue, P.S.; Cazacliu, B.G.; Lima, D.R.; Santos, A.H.; Dotto, G.L. Efficient adsorbent based on construction and demolition wastes functionalized with 3-aminopropyltriethoxysilane (APTES) for the removal ciprofloxacin from hospital synthetic effluents. J. Environ. Chem. Eng. 2020, 8, 103875. [Google Scholar] [CrossRef]
- Thue, P.S.; Umpierres, C.S.; Lima, E.C.; Lima, D.R.; Machado, F.M.; Reis, G.S.D.; da Silva, R.S.; Pavan, F.A.; Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J. Hazard. Mater. 2020, 398, 122903. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, L.; Ye, L.; Long, B.; Dai, Y.; Ding, Y. Benzimidazole-based hyper-cross-linked polymers for effective adsorption of chlortetracycline from aqueous solution. J. Environ. Chem. Eng. 2020, 8, 104562. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J. 2016, 283, 936–947. [Google Scholar] [CrossRef]
- Sewu, D.D.; Jung, H.; Kim, S.S.; Lee, D.S.; Woo, S.H. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate. Bioresour. Technol. 2019, 277, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Boakye, P.; Lee, C.W.; Lee, W.M.; Woo, S.H. The Cell Viability on Kelp and Fir Biochar and the Effect on the Field Cultivation of Corn. Clean Technol. 2016, 22, 29–34. [Google Scholar] [CrossRef]
- Chahinez, H.O.; Abdelkader, O.; Leila, Y.; Tran, H.N. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ. Technol. Innov. 2020, 19, 100872. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Ha, N.T.H.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.T.; Masindi, V.; Woo, S.H. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Yunus, Z.M.; Al-Gheethi, A.; Othman, N.; Hamdan, R.; Ruslan, N.N. Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: A microstructure and techno-economic analysis. J. Clean. Prod. 2020, 251, 119738. [Google Scholar] [CrossRef]
- Leite, A.B.; Saucier, C.; Lima, E.C.; Reis, G.S.D.; Umpierres, C.S.; Mello, B.L.; Shirmardi, M.; Dias, S.L.P.; Sampaio, C.H. Activated carbons from avocado seed: Optimisation and application for removal of several emerging organic compounds. Environ. Sci. Pollut. Res. 2018, 25, 7647–7661. [Google Scholar] [CrossRef]
- Tran, H.N.; Lee, C.K.; Vu, M.T.; Chao, H.P. Removal of Copper, Lead, Methylene Green 5, and Acid Red 1 by Saccharide-Derived Spherical Biochar Prepared at Low Calcination Temperatures: Adsorption Kinetics, Isotherms, and Thermodynamics. Water Air Soil Pollut. 2017, 228, 401. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Truong, Q.M.; Chen, C.W.; Doong, R.A.; Chen, W.H.; Dong, C.D. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl2 activation. Bioresour. Technol. 2022, 346, 126351. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Xu, Z.; Zhang, D.; Chen, W.; Cai, J.; Deng, H.; Sun, Z.; Zhou, Y. Micro-mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: Preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T. J. Solid State Chem. 2019, 269, 580–587. [Google Scholar] [CrossRef]
- Brown, K.; Mugoh, M.; Call, D.R.; Omulo, S. Antibiotic residues and antibioticresistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi. PLoS ONE 2020, 15, e0233413. [Google Scholar] [CrossRef] [PubMed]
- Gülpınar, M.; Tomul, F.; Arslan, Y.; Tran, H.N. Chitosan-based film incorporated with silver-loaded organo-bentonite or organo-bentonite: Synthesis and characterization for potential food packaging material. Int. J. Biol. Macromol. 2024, 274, 133197. [Google Scholar] [CrossRef] [PubMed]
- Naima, A.; Ammar, F.; Abdelkader, O.; Rachid, C.; Lynda, H.; Syafiuddin, A.; Boopathy, R. Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal. Bioresour. Technol. 2022, 347, 126685. [Google Scholar] [CrossRef]
- Li, Y.; Zimmerman, A.R.; He, F.; Chen, J.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Asthana, A.; Singh, A.K.; Chakraborty, R.; Vidya, S.S.; Susan, M.A.B.H.; Carabineiro, S.A.C. Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. J. Hazard. Mater. 2021, 409, 124840. [Google Scholar] [CrossRef]
- Lye, J.W.P.; Saman, N.; Sharuddin, S.S.N.; Othman, N.S.; Mohtar, S.S.; Noor, A.M.M.; Buhari, J.; Cheu, S.C.; Kong, H.; Mat, H. Removal Performance of Tetracycline and Oxytetracycline from Aqueous Solution via Natural Zeolites: An Equilibrium and Kinetic Study. CLEAN Soil Air Water 2017, 45, 1600260. [Google Scholar] [CrossRef]
- Wei, Z.; Hou, C.; Gao, Z.; Wang, L.; Yang, C.; Li, Y.; Liu, K.; Sun, Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules 2023, 28, 3188. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhou, L.; Jin, X.; Owens, G.; Chen, Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J. Hazard. Mater. 2018, 366, 563–572. [Google Scholar] [CrossRef]
- Kong, J.; Wang, Y.; Nie, C.; Ran, D.; Jia, X. Preparation of magnetic mixed-templates molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and honey samples. Anal. Methods 2012, 4, 1005–1011. [Google Scholar] [CrossRef]
Sample | Moisture Content—MC | Swelling Behavior—SB | Water Solubility—WS |
---|---|---|---|
PvBC | 15.14% | 12.13% | 38.27% |
PvBCZn | 13.41% | 10.58% | 35.62% |
Bacteria | Sample | Inhibition Zone Diameter [mm] |
---|---|---|
Staphylococcus aureus ATCC 25923 | PvBC | 0.00 |
PvBCZn | 9.00 | |
Escherichia coli ATCC 35150 | PvBC | 17.25 |
PvBCZn | 23.50 |
Kinetic Model | Parameters | PvBC | PvBCZn |
---|---|---|---|
Pseudo-first-order (PFO) | k1 (min−1) | 0.0761 | 0.1014 |
qe (mg/g) | 24.0800 | 33.0164 | |
R2 | 0.9619 | 0.9886 | |
Pseudo-second-order (PSO) | k2 (g/(mg.min)) | 0.0029 | 0.0035 |
qe (mg/g) | 29.5872 | 37.8372 | |
R2 | 0.9396 | 0.9911 | |
Elovich | β (g/mg) | 0.1460 | 0.1361 |
α (mg/(g.min)) | 4.4492 | 14.2314 | |
R2 | 0.9071 | 0.9311 |
Isotherm Model | Parameters | PvBC | PvBCZn |
---|---|---|---|
Langmuir | KL (L/mg) | 0.0216 | 0.0171 |
qm (mg/g) | 122.4907 | 188.4817 | |
R2 | 0.9710 | 0.9702 | |
Freundlich | KF (mg/g)/[(mg/L)n] | 11.5469 | 13.6514 |
1/n | 0.4098 | 0.4495 | |
R2 | 0.8549 | 0.8582 | |
Temkin | KT (L/mg) | 0.2360 | 0.1941 |
B (J/mol) | 25.8319 | 39.4940 | |
R2 | 0.9551 | 0.9342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, M.; Arslan, Y.; Luna-Domínguez, C.R.; Luna-Domínguez, J.H.; Cozza, R.C. Removal of Primamycin La from Milk Sample Using ZnCl2-Activated Biochar Prepared from Bean Plant as Adsorbent: Kinetic and Equilibrium Calculations. Processes 2025, 13, 230. https://doi.org/10.3390/pr13010230
Şahin M, Arslan Y, Luna-Domínguez CR, Luna-Domínguez JH, Cozza RC. Removal of Primamycin La from Milk Sample Using ZnCl2-Activated Biochar Prepared from Bean Plant as Adsorbent: Kinetic and Equilibrium Calculations. Processes. 2025; 13(1):230. https://doi.org/10.3390/pr13010230
Chicago/Turabian StyleŞahin, Muradiye, Yasin Arslan, Carlos Roberto Luna-Domínguez, Jorge Humberto Luna-Domínguez, and Ronaldo Câmara Cozza. 2025. "Removal of Primamycin La from Milk Sample Using ZnCl2-Activated Biochar Prepared from Bean Plant as Adsorbent: Kinetic and Equilibrium Calculations" Processes 13, no. 1: 230. https://doi.org/10.3390/pr13010230
APA StyleŞahin, M., Arslan, Y., Luna-Domínguez, C. R., Luna-Domínguez, J. H., & Cozza, R. C. (2025). Removal of Primamycin La from Milk Sample Using ZnCl2-Activated Biochar Prepared from Bean Plant as Adsorbent: Kinetic and Equilibrium Calculations. Processes, 13(1), 230. https://doi.org/10.3390/pr13010230