Exploring the Thermodynamics and Dynamics of CO2 Using Rigid Models
Abstract
1. Introduction
2. The Models and Computational Details
3. Results
3.1. Thermodynamical Behavior
3.2. Dynamical Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Oceanic and Atmospheric Administration (NOAA). Climate Change: Atmospheric Carbon Dioxide. 2022. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 16 September 2024).
- Tang, Y.; Guo, X.P.; Zhang, G.A. Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology. Corros. Sci. 2017, 118, 118–128. [Google Scholar] [CrossRef]
- Gaurina-Međimurec, N.; Mavar, K.N. Carbon Capture and Storage (CCS): Geological Sequestration of CO2; IntechOpen: London, UK, 2019; pp. 1–21. [Google Scholar]
- Cheng, J.; Cheng, X.; Wang, Z.; Jen, T.C. Enhanced hydrogen storage and CO2 capture capacities on carbon aerogels from Ni-N co-doping. Fuel 2024, 372, 132271. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Li, Z.; Wang, H.; Zhao, Y.; Qiu, J. Understanding the Positive Role of Ionic Liquids in CO2 Capture by Poly(ethylenimine). J. Phys. Chem. B 2024, 128, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, X.; Zhang, Z. Application of red mud in carbon capture, utilization and storage (CCUS) technology. Renew. Sustain. Energy Rev. 2024, 202, 114683. [Google Scholar] [CrossRef]
- Fuentes-Azcatl, R.; Domínguez, H. Carbon Dioxide Confined between Two Charged Single Layers of Graphene: Molecular Dynamics Studies. J. Phys. Chem. C 2019, 123, 23705–23710. [Google Scholar] [CrossRef]
- Cabeza, L.F.; de Gracia, A.; Fernández, A.I.; Farid, M.M. Supercritical CO2 as heat transfer fluid: A review. Appl. Therm. Eng. 2017, 125, 799–810. [Google Scholar] [CrossRef]
- Ehsan, M.M.; Awais, M.; Lee, S.; Salehin, S.; Guan, Z.; Gurgenci, H. Potential prospects of supercritical CO2 power cycles for commercialisation: Applicability, research status, and advancement. Renew. Sustain. Energy Rev. 2023, 172, 113044. [Google Scholar] [CrossRef]
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulaini, N.A.N.; Omar, A.K.M. Application of Supercritical CO2 in Lipid Extraction–A Review. Renew. Sust. Energy Rev. 2011, 15, 1936–1950. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Vidović, S.; Redovniković, I.R.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Jensen, K.F. Continuous manufacturing—The Green Chemistry promise? Green Chem. 2019, 21, 3481–3498. [Google Scholar] [CrossRef]
- Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J.C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 2006, 54, 2441–2469. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.L.; Johnston, K.P.; Williams, R.O., 3rd. Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev. Ind. Pharm. 2001, 27, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Geng, Y.; Wu, R.; Chen, W.; Wu, F.; Tian, X. Analysis of energy-related CO2 emissions in China’s pharmaceutical industry and its driving forces. J. Clean. Prod. 2019, 223, 94–108. [Google Scholar] [CrossRef]
- Anderson, R.G.; Spengler, J.D.; Arasteh, D. Carbon Capture and Storage (CCS): A Review of Status and Economics. J. CO2 Util. 2020, 34, 101259. [Google Scholar]
- Burgos-Solórzano, G.I.; Brennecke, J.F.; Stadtherr, M.A. Solubility measurements and modeling of molecules of biological and pharmaceutical interest with supercritical CO2. Fluid Phase Equilibria 2004, 220, 57–69. [Google Scholar] [CrossRef]
- Muthuraj, R.; Mekonnen, T. Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer 2018, 145, 348–373. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Han, B. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. 2022, 134, e202112835. [Google Scholar] [CrossRef]
- Grignard, B.; Gennen, S.; Jéróme, C.; Kleij, A.W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48, 4466–4514. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performance evaluation. Ind. Crops Prod. 2019, 135, 238–245. [Google Scholar] [CrossRef]
- Ikariya, T.; Noyori, R. Carbon Dioxide as a Reactant and Solvent in Catalysis; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Kamal, M.S.; Hussein, I.; Mahmoud, M.; Sultan, A.S.; Saad, M.A. Oilfield scale formation and chemical removal: A review. J. Pet. Sci. Eng. 2018, 171, 127–139. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S.; Kazemzadeh, Y. Inhibition of Barium Sulfate Precipitation During Water Injection into Oil Reservoirs Using Various Scale Inhibitors. Arab. J. Sci. Eng. 2022, 48, 9383–9399. [Google Scholar] [CrossRef]
- Yang, X.; Sheng, L.; Shi, J.; Fei, H.; Guo, D.; Bai, H.; Yao, E. Mechanism of Salt Precipitation Blockage in Low-Producing Gas Wells and the Method of Acidification Blockage Removal. ACS Omega 2024, 9, 10886–10896. [Google Scholar] [CrossRef]
- Harris, J.G.; Yung, K.H. Carbon Dioxide’s Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model. J. Phys. Chem. 1995, 31, 12021–12024. [Google Scholar] [CrossRef]
- Potoff, J.J.; Siepmann, J.I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001, 47, 1676–1682. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, Z. An optimized molecular potential for carbon dioxide. J. Phys. Chem. 2005, 122, 214507. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.P.; Tildesley, J.D. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation from Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Baronov, G.S.; Bronnikov, D.K.; Gavrikov, S.A. Vibrational excitation and rotational cooling of CO2 molecules desorbed from titanium surface. In Proceedings of the Tunable Diode Laser Applications, Moscow, Russia, 15 September 1993; Nadezhdinskii, A.I., Prokhorov, A.M., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 1992; Volume 1724, pp. 284–289. [Google Scholar] [CrossRef]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Com. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Plimpton, S.J. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 10817. [Google Scholar] [CrossRef]
- Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98. [Google Scholar] [CrossRef]
- Marques, M.S.; Hernandes, V.F.; Bordin, J.R. Core-softened Water–Alcohol Mixtures: The Solute-Size Effects. Phys. Chem. Chem. Phys. 2021, 23, 16878–16890. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Soares, M.; Mossmann, E.; Travasso, R.D.M.; Bordin, J.R. TrajPy: Empowering Feature Engineering for Trajectory Analysis Across Domains. Bioinform. Adv. 2024, 4, vbae026. [Google Scholar] [CrossRef]
- Silva-Oliveira, W.; de Moraes, E.E.; Nogueira, T.; Sales, D.A.; Bordin, J.R. Evidence of caged to normal diffusion transition in benzene along supercritical isobars: Insights from molecular dynamics simulations. J. Supercrit. Fluids 2023, 203, 106094. [Google Scholar] [CrossRef]
- Krott, L.B.; Bordin, J.R. How Dimensionality Affects the Structural Anomaly in a Core-Softened Colloid. Colloids Interfaces 2023, 7, 33. [Google Scholar] [CrossRef]
- Köhler, M.H.; Bordin, J.R.; da Silva, L.B.; Barbosa, M.C. Breakdown of the Stokes–Einstein water transport through narrow hydrophobic nanotubes. Phys. Chem. Chem. Phys. 2017, 19, 12921–12927. [Google Scholar] [CrossRef] [PubMed]
- Green, M.S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 1954, 22, 398–413. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Guggenheim, E.A. The Principle of Corresponding States. J. Chem. Phys. 1945, 13, 253–261. [Google Scholar] [CrossRef]
- Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Michels, A.; Blaisse, B.; Michels, C. The isotherms of CO2 in the neighbourhood of the critical point and round the coexistence line. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1937, 160, 358–375. [Google Scholar] [CrossRef]
- Duschek, W.; Kleinrahm, R.; Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide I. The homogeneous gas and liquid regions in the temperature range from 217 K to 340 K at pressures up to 9 MPa. J. Chem. Thermodyn. 1990, 22, 827–840. [Google Scholar] [CrossRef]
- Ely, J.; Haynes, W.; Bain, B. Isochoric (p, Vm, T) measurements on CO2 and on (0.982CO2 + 0.018N2) from 250 to 330 K at pressures to 35 MPa. J. Chem. Thermodyn. 1989, 21, 879–894. [Google Scholar] [CrossRef]
- Diaz-Herrera, E.; Ramirez-Santiago, G.; Moreno-Razo, J.A. Phase and Interfacial Behavior of Partially Miscible Symmetric Lennard-Jones Binary Mixtures. J. Chem. Phys. 2005, 123, 134116. [Google Scholar] [CrossRef] [PubMed]
- Michels, A.; Botzen, A.; Schuurman, W. The viscosity of carbon dioxide between 0 °C and 75 °C and at pressures up to 2000 atmospheres. Physica 1957, 23, 95–102. [Google Scholar] [CrossRef]
- McHugh, M.A.; Krukonis, V.J. Supercritical Fluid Extraction: Principles and Practice, 1st ed.; Butterworth-Heinemann: Boston, MA, USA, 1986. [Google Scholar]
- Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 1997, 10, 1–37. [Google Scholar] [CrossRef]
Model | (Å) | / (K) | (Å) | / (K) | (Å) | (e) | (e) |
---|---|---|---|---|---|---|---|
EPM2 | 1.149 | 28.129 | 2.757 | 80.508 | 3.033 | +0.6512 | −0.3256 |
TraPPE-small | 1.160 | 27.0 | 2.800 | 79.0 | 3.050 | +0.700 | −0.350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, L.A.; Silva-Oliveira, W.; de Moraes, E.E.; Bordin, J.R. Exploring the Thermodynamics and Dynamics of CO2 Using Rigid Models. Processes 2025, 13, 148. https://doi.org/10.3390/pr13010148
Pinheiro LA, Silva-Oliveira W, de Moraes EE, Bordin JR. Exploring the Thermodynamics and Dynamics of CO2 Using Rigid Models. Processes. 2025; 13(1):148. https://doi.org/10.3390/pr13010148
Chicago/Turabian StylePinheiro, Lucas Avila, Walas Silva-Oliveira, Elizane E. de Moraes, and José Rafael Bordin. 2025. "Exploring the Thermodynamics and Dynamics of CO2 Using Rigid Models" Processes 13, no. 1: 148. https://doi.org/10.3390/pr13010148
APA StylePinheiro, L. A., Silva-Oliveira, W., de Moraes, E. E., & Bordin, J. R. (2025). Exploring the Thermodynamics and Dynamics of CO2 Using Rigid Models. Processes, 13(1), 148. https://doi.org/10.3390/pr13010148