Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis
Abstract
:1. Introduction
2. Experimental Section
2.1. Catalyst Preparation
2.1.1. Preparation of M-Cu/ZnO/Al2O3(10)
2.1.2. Preparation of F-C8-Cu/ZnO/Al2O3
2.2. Catalyst Characterization
2.3. Catalystic Tests
2.3.1. Thermal Stability Evaluation
- (1)
- Short-term thermal stability evaluation at different temperatures
- (2)
- Long-term thermal stability evaluation at 240 °C
2.3.2. Catalytic Performance Test
3. Results
3.1. Surface Modification of Cu/ZnO/Al2O3
3.2. Evaluation of Catalyst Thermal Stability
3.3. Catalytic Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haw, J.F.; Song, W.; Marcus, D.M.; Nicholas, J.B. The Mechanism of Methanol to Hydrocarbon Catalysis. Acc. Chem. Res. 2003, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Deitermann, M.; Huang, Z.; Lechler, S.; Merko, M.; Muhler, M. Non-Classical Conversion of Methanol to Formaldehyde. Chem. Ing. Tech. 2022, 94, 1573–1590. [Google Scholar] [CrossRef]
- Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Solid-State Interactions, Adsorption Sites and Functionality of Cu-ZnO/ZrO2 Catalysts in the CO2 Hydrogenation to CH3OH. Appl. Catal. A Gen. 2008, 350, 16–23. [Google Scholar] [CrossRef]
- Choi, E.J.; Lee, Y.H.; Lee, D.-W.; Moon, D.-J.; Lee, K.-Y. Hydrogenation of CO2 to Methanol over Pd-Cu/CeO2 Catalysts. J. Catal. 2017, 434, 146–153. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Gao, P. Direct Carbon Dioxide Hydrogenation to Produce Bulk Chemicals and Liquid Fuels via Heterogeneous Catalysis. Chin. J. Catal. 2022, 43, 2045–2056. [Google Scholar] [CrossRef]
- Qin, B.; Li, S.G. First Principles Investigation of Dissociative Adsorption of H2 During CO2 Hydrogenation over Cubic and Hexagonal In2O3 Catalysts. Phys. Chem. Chem. Phys. 2020, 22, 3390–3399. [Google Scholar] [CrossRef]
- Twigg, M.V.; Spencer, M.S. Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions. Appl. Catal. A Gen. 2001, 212, 161–174. [Google Scholar] [CrossRef]
- Martin, O.; Pérez-Ramírez, J. New and Revisited Insights into the Promotion of Methanol Synthesis Catalysts by CO2. Catal. Sci. Technol. 2013, 3, 3343–3352. [Google Scholar] [CrossRef]
- Wang, D.S.; Han, Y.Z.; Tan, Y.S.; Tsubaki, N. Effect of H2O on Cu-Based Catalyst in One-Step Slurry Phase Dimethyl Ether Synthesis. Fuel Process. Technol. 2009, 90, 446–451. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.L.; Zhao, Y.J.; Lv, J.; Wang, S.P.; Ma, X.B. Insight into the Balancing Effect of Active Cu Species for Hydrogenation of Carbon-Oxygen Bonds. ACS Catal. 2015, 5, 6200–6208. [Google Scholar] [CrossRef]
- Xie, Z.; Hei, J.P.; Cheng, L.; Li, J.; Yin, X.J.; Meng, S.G. Influence of Cu/Al Ratio on the Performance of Carbon-Supported Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol. Catalysts 2023, 13, 800. [Google Scholar] [CrossRef]
- Li, D.D.; Xu, F.; Tang, X.; Dai, S.; Pu, T.C.; Liu, X.L.; Tian, P.F.; Xuan, F.Z.; Xu, Z.; Wachs, I.E.; et al. Induced Ativation of the Commercial Cu/ZnO/Al2O3 Catalyst for the Steam Reforming of Methanol. Nat. Catal. 2022, 5, 99–108. [Google Scholar] [CrossRef]
- Bozzano, G.; Manenti, F. Efficient Methanol Synthesis: Perspectives, Technologies and Optimization Strategies. Prog. Energ. Combust. 2016, 56, 71–105. [Google Scholar] [CrossRef]
- Tian, C.Y.; Huang, A.S. Synthesis of a Cu/Zn-BTC@LTA Derivatived Cu-ZnO@LTA Membrane Reactor for CO2 Hydrogenation. J. Membr. Sci. 2022, 662, 121010. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Wang, T.T.; Xi, Y.J.; Sun, P.; Li, F.W. Boosting CO2 Hydrogenation to Methanol via Cu-Zn Synergy over Highly Dispersed Cu,Zn-Codoped ZrO2 Catalysts. Catal. Today 2023, 410, 205–214. [Google Scholar] [CrossRef]
- Chen, F.; Gao, W.Z.; Wang, K.Z.; Wang, C.W.; Wu, X.M.; Liu, N.; Guo, X.Y.; He, Y.L.; Zhang, P.P.; Yang, G.H.; et al. Enhanced Performance and Stability of Cu/ZnO Catalyst by Introducing MgO for Low-Temperature Methanol Synthesis Using Methanol Itself as Catalytic Promoter. Fuel 2022, 315, 123272. [Google Scholar] [CrossRef]
- Tan, M.H.; Tian, S.; Zhang, T.; Wang, K.Z.; Xiao, L.W.; Liang, J.M.; Ma, Q.X.; Yang, G.H.; Tsubaki, N.; Tan, Y.S. Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water-Gas Shift Reaction in Syngas Conversion. ACS Catal. 2021, 11, 4633–4643. [Google Scholar] [CrossRef]
- Koch, K.; Bohn, H.F.; Barthlott, W. Hierarchically Sculptured Plant Surfaces and Superhydrophobicity. Langmuir 2009, 25, 14116–14120. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Y.Y.; Ding, J.F.; Wang, Q.J.; Chen, Q.M. Water Condensation on Superhydrophobic Aluminum Surfaces with Different Low-Surface-Energy Coatings. Appl. Surf. Sci. 2012, 258, 4063–4068. [Google Scholar] [CrossRef]
- Choi, H.J.; Shin, J.H.; Choo, S.; Ryn, S.W.; Kim, Y.D.; Lee, H. Fabrication of Superhydrophobic and Oleophobic Al Surfaces by Chemical Etching and Surface Fluorination. Thin Solid Films 2015, 585, 76–80. [Google Scholar] [CrossRef]
- Qi, Y.; Cui, Z.; Liang, B.; Parnas, R.S.; Lu, H.F. A Fast Method to Fabricate Superhydrophobic Surfaces on Zinc Substrate with Ion Assisted Chemical Etching. Appl. Surf. Sci. 2014, 305, 716–724. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Mahadik, S.S. Surface Morphological and Topographical Analysis of Multifunctional Superhydrophobic Sol-Gel Coatings. Ceram. Int. 2021, 47, 29475–29482. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.B.; Li, B.C.; Hu, T.; Yang, Y.F.; Li, L.X.; Zhang, J.P. Environmentally Benign and Durable Superhydrophobic Coatings Based on SiO2 Nanoparticles and Silanes. J. Colloid Interf. Sci. 2019, 542, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.M.; Fu, S.Y. Reconstructing Micro/Nano Hierarchical Structures Particle with Nanocellulose for Superhydrophobic Coatings. Colloid Surface A 2019, 560, 171–179. [Google Scholar] [CrossRef]
- Wang, F.; Chen, F.; Guo, X.Y.; He, Y.L.; Guo, W.Z.; Yasuda, S.; Yang, G.H.; Tsubaki, N. Enhanced Performance and Stability of Cu/ZnO Catalyst by Hydrophobic Treatment for Low-Temperature Methanol Synthesis from CO2. Catal. Today 2024, 425, 114344. [Google Scholar] [CrossRef]
- Xu, C.Q.; Yan, Z.Q.; Yu, J.; Wang, X.Y.; Ban, H.Y.; Wang, Y.; Li, C.M. Development of Stable Water-Resistant Cu-Based Catalyst for Methanol Synthesis. Appl. Catal. A Gen. 2021, 623, 118299. [Google Scholar] [CrossRef]
- Bhushan, B.; Martin, S. Substrate-Independent Superliquiphobic Coatings for Water, Oil, and Surfactant Repellency: An Overview. J. Colloid Interf. Sci. 2018, 526, 90–105. [Google Scholar] [CrossRef]
- Nishino, T.; Megreo, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. The Lowest Surface Free Energy Based on -CF3 Alignment. Langmuir 1999, 15, 4321–4323. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.H.; Zhai, J.; Li, H.J.; Zheng, Q.S.; Jiang, L.; Zhu, D.B. Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films. Angew. Chem. Int. Edit. 2004, 43, 1146–1149. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Han, C.Y.; Welp, U.; Wang, H.H.; Kwok, W.K.; Willing, G.A.; Hiller, J.M.; Cook, R.E.; Miller, D.J.; Crabtree, G.W. Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes. Nano Lett. 2002, 2, 1293–1297. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Huang, H.; Fan, S.S. Regular Alumina Nanopillar Arrays. Adv. Mater. 2002, 14, 303–306. [Google Scholar] [CrossRef]
- Chen, X.H.; Cao, X.Y.; Chen, G.M.; Ma, Y.M.; Wang, F.S. Fabrication of Superhydrophobic Surfaces via Poly(Methyl Methacrylate)-Modified Anodic Aluminum Oxide Membrane. J. Coat. Technol. Res. 2014, 11, 711–716. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Y.; Zhai, J. A Lotus-Leaf-Like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics. Angew. Chem. Int. Edit. 2004, 43, 4338–4341. [Google Scholar] [CrossRef] [PubMed]
- Padmaja, P.; Anilkumar, G.M.; Mukundan, P.; Aruldhas, G.; Warrier, K.G.K. Characterisation of Stoichiometric Sol-Gel Mullite by Fourier Transform Infrared Spectroscopy. Int. J. Inorg. Mater. 2001, 3, 693–698. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.W.; Fan, H. Enhancement of Stability and Activity of Cu/ZnO/Al2O3 Catalysts by Microwave Irradiation for Liquid Phase Methanol Synthesis. Fuel 2013, 106, 178–186. [Google Scholar] [CrossRef]
- Xie, W.L.; Wang, H. Immobilized Polymeric Sulfonated Ionic Liquid on Core-Shell Structured Fe3O4/SiO2 Composites: A Magnetically Recyclable Catalyst for Simultaneous Transesterification and Esterifications of Low-Cost Oils to Biodiesel. Renew. Energ. 2020, 145, 1709–1719. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, F.; Fang, L.; Ruan, H.B.; Hu, J.; Zeng, X.G.; Zhang, S.F.; Luo, H.J.; Zhou, M. Effect of Deposition Sequence of MgAl-LDH and SiO2@PDMS Layers on the Corrosion Resistance of Robust Superhydrophobic/Self-Healing Multifunctional Coatings on Magnesium Alloy. Prog. Org. Coat. 2023, 174, 107299. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.G.; Miao, X.R.; Deng, W.L. Fabrication of Robust Superhydrophobic Magnetic Multifunctional Coatings and Liquid Marbles. J. Colloid Interf. Sci. 2022, 628, 619–630. [Google Scholar] [CrossRef]
- Fei, T.; Chen, H.L.; Lin, J.B. Transparent Superhydrophobic Films Possessing High Thermal Stability and Improved Moisture Resistance from the Deposition of MTMS-Based Aerogels. Colloid Surface A 2014, 443, 255–264. [Google Scholar] [CrossRef]
- Mobaraki, A.; Movassagh, B.; Karimi, B. Hydrophobicity-Enhanced Magnetic Solid Sulfonic Acid: A Simple Approach to Improve the Mass Transfer of Reaction Partners on the Surface of the Heterogeneous Catalyst in Water-Generating Reactions. Appl. Catal. A Gen. 2014, 472, 123–133. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, D.K.; Lee, S.B.; Kwon, S.H.; Kadono, K. Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane. J. Colloid Interf. Sci. 2001, 235, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Khemakhem, S.; Ben Amar, R. Grafting of Fluoroalkylsilanes on Microfiltration Tunisian Clay Membrane. Ceram. Int. 2011, 37, 3323–3328. [Google Scholar] [CrossRef]
- Saleema, N.; Sarkar, D.K.; Gallant, D.; Paynter, R.W.; Chen, X.G. Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium. ACS Appl. Mater. Interfaces 2011, 3, 4775–4781. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.; Castricum, H.L.; Bliek, A.; Blank, D.H.A.; ten Elshof, J.E. Hydrophobic Modification of γ-Alumina Membranes with Organochlorosilanes. J. Membr. Sci. 2004, 243, 125–132. [Google Scholar] [CrossRef]
- Sripathi, V.G.P.; Mojet, B.L.; Nijimeijer, A.; Benes, N.E. Vapor Phase Versus Liquid Phase Grafting of Meso-Porous Alumina. Micropor. Mesopor. Mat. 2013, 172, 1–6. [Google Scholar] [CrossRef]
- Li, T.Z.; Fu, C.; Qi, J.S.; Pan, J.; Chen, S.H.; Lin, J.J. Effect of Zinc Incorporation Manner on a Cu-ZnO/Al2O3 Glycerol Hydrogenation Catalyst. React. Kinet. Mech. Cat. 2013, 109, 117–131. [Google Scholar] [CrossRef]
- Melián-Cabrera, I.; Granados, M.L.; Fierro, J.L.G. Thermal Decomposition of a Hydrotalcite-Containing Cu-Zn-Al Precursor: Thermal Methods Combined with an In Situ DRIFT Study. Phys. Chem. Chem. Phys. 2002, 4, 3122–3127. [Google Scholar] [CrossRef]
- Ay, S.; Ozdemir, M.; Melikoglu, M. Effects of Metal Promotion on the Performance, Catalytic Activity, Selectivity and Deactivation Rates of Cu/ZnO/Al2O3 Catalysts for Methanol Synthesis. Chem. Eng. Res. Des. 2021, 175, 146–160. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Bai, H.M.; Zhou, J.Z.; Chen, C.X.; Xu, X.; Xu, Y.F.; Qian, G.R. Thermal and Chemical Stability of Cu-Zn-Cr-LDHs Prepared by Accelerated Carbonation. Appl. Clay Sci. 2009, 42, 591–596. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Eshaghi, A. Fabrication of Antireflective Superhydrophobic Thin Film Based on the TMMS with Self-Cleaning and Anti-Icing Properties. Prog. Org. Coat. 2018, 122, 199–206. [Google Scholar] [CrossRef]
- Amii, H.; Uneyama, K. C-F Bond Activation in Organic Synthesis. Chem. Rev. 2009, 109, 2119–2183. [Google Scholar] [CrossRef] [PubMed]
- Iacono, S.T.; Jennings, A.R. Recent Studies on Fluorinated Silica Nanometer-Sized Particles. Nanomaterials 2019, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Aloulou, H.; Aloulou, W.; Daramola, M.O.; Ben Amer, R. Silane-Grafted Sand Membrane for the Treatment of Oily Wastewater via Air Gap Membrane Distillation: Study of the Efficiency in Comparison with Microfiltration and Ultrafiltration Ceramic Membranes. Mater. Chem. Phys. 2021, 261, 124186. [Google Scholar] [CrossRef]
- Chandekar, A.; Sengupta, S.K.; Whitten, J.E. Thermal Stability of Thiol and Silane Monolayers: A Comparative Study. Appl. Surf. Sci. 2010, 256, 2742–2749. [Google Scholar] [CrossRef]
- Khemakhem, M.; Khemakhem, S.; Ben Amar, R. Surface Modification of Microfiltration Ceramic Membrane by Fluoroalkylsilane. Desalin. Water Treat. 2014, 52, 1786–1791. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Ordomsky, V.V.; Palcic, A.; Cai, M.D.; Subramanian, V.; Luo, Y.; Valtchev, V.; Moldovan, S.; Ersen, O. Assessment of Metal Sintering in the Copper-Zeolite Hybrid Catalyst for Direct Dimethyl Ether Synthesis Using Synchrotron-Based X-Ray Absorption and Diffraction. Catal. Today 2019, 343, 199–205. [Google Scholar] [CrossRef]
- Simanungkalit, S.P.; Jones, I.; Okoye, C.O.; Zhang, Z.Z.; Zhu, M.M.; Zhang, D.K. A Preliminary Attempt of Direct Methanol Synthesis from Biomass Pyrolysis Syngas over Cu/ZnO/Al2O3 Catalysts. Biomass Bioenerg. 2023, 174, 106850. [Google Scholar] [CrossRef]
- Perera, H.J.; Goyal, A.; Alhassan, S.M. Morphological, Structural and Thermal Properties of Silane-treated Date Palm Fibers. J. Nat. Fibers 2022, 19, 12144–12154. [Google Scholar] [CrossRef]
Property | Value |
---|---|
chemical composition | |
Cu | >42% |
Zn | 20 ± 2% |
Al | 5 ± 1% |
axial crush strength | ≥200 N |
expected filling density | 1100–1400 kg m−3 |
Catalysts | BET Surface Area/m2·g−1 | Pore Volume/cm3·g−1 | BJH Diameter/nm |
---|---|---|---|
Cu/ZnO/Al2O3 | 89.16 | 0.25 | 8.11 |
Etched-Cu/ZnO/Al2O3 | 86.14 | 0.21 | 6.98 |
M-Cu/ZnO/Al2O3(10) | 81.48 | 0.20 | 6.74 |
F-C8-Cu/ZnO/Al2O3 | 85.11 | 0.21 | 6.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, F.; Liu, J.; Chen, K.; Cheng, Z. Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis. Processes 2024, 12, 2008. https://doi.org/10.3390/pr12092008
Ma F, Liu J, Chen K, Cheng Z. Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis. Processes. 2024; 12(9):2008. https://doi.org/10.3390/pr12092008
Chicago/Turabian StyleMa, Futao, Jingjing Liu, Kaixuan Chen, and Zhenmin Cheng. 2024. "Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis" Processes 12, no. 9: 2008. https://doi.org/10.3390/pr12092008
APA StyleMa, F., Liu, J., Chen, K., & Cheng, Z. (2024). Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis. Processes, 12(9), 2008. https://doi.org/10.3390/pr12092008