Impacts of Polyvinyl Alcohol and Chitosan-Modified Biochar on the Anaerobic Digestion of Sewage Sludge and Valuable Resource Recovery
Abstract
1. Introduction
2. Pyrolysis Process and Modification of Biochar
2.1. Physicochemical Characteristics of Modified Biochar
2.1.1. pH and Surface Charge
- BC-OH represents the raw biochar surface with hydroxyl groups;
- PVA-R represents polyvinyl alcohol, where R is the polymer chain;
- CTS-NH2 represents chitosan with its amine groups;
- BC-(O-PVA-R)-(NH-CTS) represents the modified biochar surface.
2.1.2. Specific Surface Area and Functional Groups
3. Polyvinyl Alcohol/Chitosan-Based Absorbent for Pollutants
3.1. Adsorption of Dyes
3.2. Adsorption of Heavy Metals
3.3. Potential Adsorption Mechanisms for Removal of Heavy Metals and Dyes Using PVA-CTS-Modified Biochar in Anaerobic Digestion
4. Performance of Polyvinyl Alcohol/Chitosan Modified Biochar in Anaerobic Digestion and Co-Processing with Plasma Pyrolysis
NH4+ + Modified Biochar ⇌ NH4+ − Biochar
PO43− + Modified Biochar ⇌ PO43− − Biochar
5. Techno-Economics of the Proposed Technology
6. Challenges and Future Outlooks
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giwa, A.S.; Maurice, N.J.; Ai, L.; Liu, X.; Yang, Y.; Zhao, H. Advances in Sewage Sludge Application and Treatment: Process Integration of Plasma Pyrolysis and Anaerobic Digestion with the Resource Recovery. Heliyon 2023, 9, e19765. [Google Scholar] [CrossRef] [PubMed]
- Nyashanu, P.N.; Shafodino, F.S.; Mwapagha, L.M. Determining the Potential Human Health Risks Posed by Heavy Metals Present in Municipal Sewage Sludge from a Wastewater Treatment Plant. Sci. Afr. 2023, 20, e01735. [Google Scholar] [CrossRef]
- Wang, M.; Mao, M.; Zhang, M.; Wen, G.; Yang, Q.; Su, B.; Ren, Q. Highly Efficient Treatment of Textile Dyeing Sludge by CO2 Thermal Plasma Gasification. Waste Manag. 2019, 90, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, P.; Singh, R.; Bala, S.; Pathak, N.; Singh, S.; Chauhan, R.S.; Singh, P.K. Microbial Biosorbent for Remediation of Dyes and Heavy Metals Pollution: A Green Strategy for Sustainable Environment. Front. Microbiol. 2023, 14, 1168954. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of Sewage Sludge Using Anaerobic Digestion in Malaysia: Current State and Challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef]
- Galaly, A.R. Sustainable Development Solutions for the Medical Waste Problem Using Thermal Plasmas. Sustainability 2022, 14, 11045. [Google Scholar] [CrossRef]
- Pujol Pozo, A.A.; Monroy-Guzmán, F.; Gómora-Herrera, D.R.; Navarrete-Bolaños, J.; Bustos Bustos, E. Radioactive Decontamination of Metal Surfaces Using Peelable Films Made from Chitosan Gels and Chitosan/Magnetite Nanoparticle Composites. Prog. Nucl. Energy 2022, 144, 104088. [Google Scholar] [CrossRef]
- Giwa, A.S.; Ali, N.; Vakili, M.; Guo, X.; Liu, D.; Wang, K. Opportunities for Holistic Waste Stream Valorization from Food Waste Treatment Facilities: A Review. Rev. Chem. Eng. 2022, 38, 35–53. [Google Scholar] [CrossRef]
- Giwa, A.S. Effectiveness of Torrefaction By-Products as Additive in Vacuum Blackwater under Anaerobic Digestion and Economic Significance. Processes 2023, 11, 3330. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour. Technol. 2021, 341, 125797. [Google Scholar] [CrossRef] [PubMed]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar Production Techniques Utilizing Biomass Waste-Derived Materials and Environmental Applications—A Review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- Huang, H.; Reddy, N.G.; Huang, X.; Chen, P.; Wang, P.; Zhang, Y.; Huang, Y.; Lin, P.; Garg, A. Effects of Pyrolysis Temperature, Feedstock Type and Compaction on Water Retention of Biochar Amended Soil. Sci. Rep. 2021, 11, 7419. [Google Scholar] [CrossRef]
- Pardo, R.; Taboada-Ruiz, L.; Fuente, E.; Ruiz, B.; Díaz-Somoano, M.; Calvo, L.F.; Paniagua, S. Exploring the Potential of Conventional and Flash Pyrolysis Methods for the Valorisation of Grape Seed and Chestnut Shell Biomass from Agri-Food Industry Waste. Biomass Bioenergy 2023, 177, 106942. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into Biomass Pyrolysis Mechanism Based on Cellulose, Hemicellulose, and Lignin: Evolution of Volatiles and Kinetics, Elucidation of Reaction Pathways, and Characterization of Gas, Biochar and Bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Sopanrao, K.S.; Sreedhar, I. Polyvinyl Alcohol Modified Chitosan Composite as a Novel and Efficient Adsorbent for Multi-Metal Removal. Sep. Purif. Technol. 2024, 340, 126731. [Google Scholar] [CrossRef]
- Patel, P.K.; Pandey, L.M.; Uppaluri, R.V.S. Adsorptive Removal of Zn, Fe, and Pb from Zn Dominant Simulated Industrial Wastewater Solution Using Polyvinyl Alcohol Grafted Chitosan Variant Resins. Chem. Eng. J. 2023, 459, 141563. [Google Scholar] [CrossRef]
- Fazzalari, A. Impact of Post-Pyrolysis Wash on Biochar Powders and Their Respective Granule Formations. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2021; 105p. Available online: https://ir.lib.uwo.ca/etd/7793 (accessed on 15 May 2024).
- Wu, S.; Li, K.; Shi, W.; Cai, J. Preparation and Performance Evaluation of Chitosan/Polyvinylpyrrolidone/Polyvinyl Alcohol Electrospun Nanofiber Membrane for Heavy Metal Ions and Organic Pollutants Removal. Int. J. Biol. Macromol. 2022, 210, 76–84. [Google Scholar] [CrossRef]
- Perez-Calderon, J.; Marin-Silva, D.A.; Zaritzky, N.; Pinotti, A. Eco-Friendly PVA-Chitosan Adsorbent Films for the Removal of Azo Dye Acid Orange 7: Physical Cross-Linking, Adsorption Process, and Reuse of the Material. Adv. Ind. Eng. Polym. Res. 2023, 6, 239–254. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Wang, J. Removal of Co2+ from Radioactive Wastewater by Polyvinyl Alcohol (PVA)/Chitosan Magnetic Composite. Prog. Nucl. Energy 2014, 71, 172–178. [Google Scholar] [CrossRef]
- Soliman, E.; Mansour, M.M. Enhancing Soil Organic Carbon Content and Water Retention Using Polyvinyl Alcohol Cross-Linked with Chitosan and Pectin. J. Soil Sci. Plant Nutr. 2024, 24, 791–803. [Google Scholar] [CrossRef]
- Safie, N.N.; Zahrim Yaser, A.; Hilal, N. Ammonium Ion Removal Using Activated Zeolite and Chitosan. Asia-Pac. J. Chem. Eng. 2020, 15, e2448. [Google Scholar] [CrossRef]
- Song, J.; Liu, J.; Zhao, W.; Chen, Y.; Xiao, H.; Shi, X.; Liu, Y.; Chen, X. Quaternized Chitosan/PVA Aerogels for Reversible CO2 Capture from Ambient Air. Ind. Eng. Chem. Res. 2018, 57, 4941–4948. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Zhao, Q.; Li, C.; Huang, J.; Hu, X.; Li, J.; Li, M. Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism. Separations 2023, 10, 358. [Google Scholar] [CrossRef]
- Al-Sulaimi, I.N.; Nayak, J.K.; Alhimali, H.; Sana, A.; Al-Mamun, A. Effect of Volatile Fatty Acids Accumulation on Biogas Production by Sludge-Feeding Thermophilic Anaerobic Digester and Predicting Process Parameters. Fermentation 2022, 8, 184. [Google Scholar] [CrossRef]
- Zhang, H.; Li, R.; Zhang, Z. A Versatile EDTA and Chitosan Bi-Functionalized Magnetic Bamboo Biochar for Simultaneous Removal of Methyl Orange and Heavy Metals from Complex Wastewater. Environ. Pollut. 2022, 293, 118517. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Zheng, P.; Wang, Y. Anaerobic Digestion of Food Waste Stabilized by Lime Mud from Papermaking Process. Bioresour. Technol. 2014, 170, 270–277. [Google Scholar] [CrossRef]
- Giwa, A.S.; Ndungutse, J.M.; Li, Y.; Liu, X.; Vakili, M.; Memon, A.G.; Ai, L. Modification of Biochar with Fe 3 O 4 and Humic Acid-Salt for Removal of Mercury from Aqueous Solutions: A Review. Environ. Pollut. Bioavailab. 2022, 34, 352–364. [Google Scholar] [CrossRef]
- Chin, J.F.; Heng, Z.W.; Teoh, H.C.; Chong, W.C.; Pang, Y.L. Recent Development of Magnetic Biochar Crosslinked Chitosan on Heavy Metal Removal from Wastewater—Modification, Application and Mechanism. Chemosphere 2022, 291, 133035. [Google Scholar] [CrossRef] [PubMed]
- Altinisik, A.; Yurdakoc, K. Chitosan-/PVA-Coated Magnetic Nanoparticles for Cu(II) Ions Adsorption. Desalin. Water Treat. 2016, 57, 18463–18474. [Google Scholar] [CrossRef]
- Malek, N.N.A.; Jawad, A.H.; Ismail, K.; Razuan, R.; ALOthman, Z.A. Fly Ash Modified Magnetic Chitosan-Polyvinyl Alcohol Blend for Reactive Orange 16 Dye Removal: Adsorption Parametric Optimization. Int. J. Biol. Macromol. 2021, 189, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Gutha, Y.; Zhang, W. Application of Chitosan/Poly(Vinyl Alcohol)/CuO (CS/PVA/CuO) Beads as an Adsorbent Material for the Removal of Pb(II) from Aqueous Environment. Colloids Surf. B Biointerfaces 2017, 149, 184–195. [Google Scholar] [CrossRef]
- Li, X.; Han, R.; Song, C.; Liu, Y. Preparation of Polyvinyl Alcohol-Calcium Sustained-Release Agent Employed to Degrade Long-Chain Fatty Acids and Improve the Performance of Anaerobic Digestion of Food Waste. Renew. Energy 2022, 199, 653–661. [Google Scholar] [CrossRef]
- Nie, W.; Lin, Y.; Wu, X.; Wu, S.; Li, X.; Cheng, J.J.; Yang, C. Chitosan-Fe3O4 Composites Enhance Anaerobic Digestion of Liquor Wastewater under Acidic Stress. Bioresour. Technol. 2023, 377, 128927. [Google Scholar] [CrossRef]
- Yin, M.; Chen, H. Unveiling the Dual Faces of Chitosan in Anaerobic Digestion of Waste Activated Sludge. Bioresour. Technol. 2022, 344, 126182. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Yang, A.; Zhu, Q.; Sun, H.; Sun, P.; Yao, B.; Zang, Y.; Du, X.; Dong, L. Xanthate-Modified Magnetic Fe3O4@SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water. Polymers 2022, 14, 1107. [Google Scholar] [CrossRef]
- Patel, P.K.; Pandey, L.M.; Uppaluri, R.V.S. Cyclic Desorption Based Efficacy of Polyvinyl Alcohol-Chitosan Variant Resins for Multi Heavy-Metal Removal. Int. J. Biol. Macromol. 2023, 242, 124812. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Fu, C.C.; Juang, R.S. Effective Removal of Sulfur Dyes from Water by Biosorption and Subsequent Immobilized Laccase Degradation on Crosslinked Chitosan Beads. Chem. Eng. J. 2016, 304, 313–324. [Google Scholar] [CrossRef]
- Wang, P.; Tan, L.; Yuan, G.; Feng, S.; Tang, H.; Wang, G.; Wang, C. ZIF-8 Modified Polyvinyl Alcohol/Chitosan Composite Aerogel for Efficient Removal of Congo Red. J. Solid State Chem. 2022, 316, 123628. [Google Scholar] [CrossRef]
- Elzahar, M.M.H.; Bassyouni, M. Removal of Direct Dyes from Wastewater Using Chitosan and Polyacrylamide Blends. Sci. Rep. 2023, 13, 15750. [Google Scholar] [CrossRef] [PubMed]
- Ben Khalifa, E.; Cecone, C.; Rzig, B.; Azaiez, S.; Cesano, F.; Malandrino, M.; Bracco, P.; Magnacca, G. Green Surface Modification of Polyvinyl Alcohol Fibers and Its Application for Dye Removal Using Doehlert Experimental Design. React. Funct. Polym. 2023, 193, 105763. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, Q.; Yu, H.; Shao, L.; Cui, X.; Pang, Q.; Zhu, Y.; Hou, R. Construction Methods and Biomedical Applications of PVA-Based Hydrogels. Front. Chem. 2024, 12, 1376799. [Google Scholar] [CrossRef]
- Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 Nanoparticles Filled Chitosan/PVA/PES Dual Layers Nanofibrous Membrane for the Removal of Cr(VI) and Pb(II) Ions from Aqueous Solutions in Adsorption and Membrane Processes. Chem. Eng. J. 2018, 337, 169–182. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Hua, R.; Wang, Y.; Liu, Y.; Pang, C.; Wang, Y. Selective Adsorption of Uranyl Ion on Ion-Imprinted Chitosan/PVA Cross-Linked Hydrogel. Hydrometallurgy 2010, 104, 150–155. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Zhu, Y.; Fang, W.; Tan, Y.; He, Z.; Liao, H. Research Status, Trends, and Mechanisms of Biochar Adsorption for Wastewater Treatment: A Scientometric Review. Environ. Sci. Eur. 2024, 36, 25. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Hu, X.; Hu, X.; Zhang, R.; Li, Q. Characteristics and Mechanism of Pb2+ Adsorption From Aqueous Solution Onto Biochar Derived From Microalgae and Chitosan-Modified Microalgae. Front. Environ. Chem. 2021, 2, 693509. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.; Chen, H.; Wang, W.; Yang, Y. Comparative Study of Biochar Modified with Different Functional Groups for Efficient Removal of Pb(II) and Ni(II). Int. J. Environ. Res. Public Health 2022, 19, 11163. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, X.; Jiao, J.; Li, Y.; Wei, M. Surface-Modified Biochar with Polydentate Binding Sites for the Removal of Cadmium. Int. J. Mol. Sci. 2019, 20, 1775. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, M.; Li, J.; Yao, Y.; Tang, J.; Niu, Q. The Dosage-Effect of Biochar on Anaerobic Digestion under the Suppression of Oily Sludge: Performance Variation, Microbial Community Succession and Potential Detoxification Mechanisms. J. Hazard. Mater. 2022, 421, 126819. [Google Scholar] [CrossRef] [PubMed]
- Sitthi, S.; Hatamoto, M.; Watari, T.; Yamaguchi, T. Enhancing Anaerobic Syntrophic Propionate Degradation Using Modified Polyvinyl Alcohol Gel Beads. Heliyon 2020, 6, e05665. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ding, Y.; Wang, Y.; Song, X.; Ambrose, R.F.; Ullman, J.L.; Winfrey, B.K.; Wang, J.; Gong, J. Treatment of Rich Ammonia Nitrogen Wastewater with Polyvinyl Alcohol Immobilized Nitrifier Biofortified Constructed Wetlands. Ecol. Eng. 2016, 94, 7–11. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Kennedy, J.F. The Application of Chitosan as a Carrier for Fertilizer: A Review. Int. J. Biol. Macromol. 2023, 252, 126483. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.F.; Han, S.; Claire, M.J.; Maurice, N.J.; Vakili, M.; Giwa, A.S. Sustainable Treatment of Spent Photovoltaic Solar Panels Using Plasma Pyrolysis Technology and Its Economic Significance. Clean Technol. 2024, 6, 432–452. [Google Scholar] [CrossRef]
- Zhai, P.; Li, Y.; Wang, M.; Liu, J.; Cao, Z.; Zhang, J.; Xu, Y.; Liu, X.; Li, Y.W.; Zhu, Q.; et al. Development of Direct Conversion of Syngas to Unsaturated Hydrocarbons Based on Fischer-Tropsch Route. Chem 2021, 7, 3027–3051. [Google Scholar] [CrossRef]
- Tozsin, G.; Oztas, T. Utilization of Steel Slag as a Soil Amendment and Mineral Fertilizer in Agriculture: A Review. Tarim Bilim. Derg. 2023, 29, 906–913. [Google Scholar] [CrossRef]
- Han, F.; Yun, S.; Zhang, C.; Xu, H.; Wang, Z. Steel Slag as Accelerant in Anaerobic Digestion for Nonhazardous Treatment and Digestate Fertilizer Utilization. Bioresour. Technol. 2019, 282, 331–338. [Google Scholar] [CrossRef]
- Ramírez, J.; Deago, E.; James Rivas, A.M.C. Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions. Energies 2024, 17, 2393. [Google Scholar] [CrossRef]
- Bhatt, K.P.; Patel, S.; Upadhyay, D.S.; Patel, R.N. A Critical Review on Solid Waste Treatment Using Plasma Pyrolysis Technology. Chem. Eng. Process.-Process Intensif. 2022, 177, 108989. [Google Scholar] [CrossRef]
- Weimers, K.; Bergstrand, K.J.; Hultberg, M.; Asp, H. Liquid Anaerobic Digestate as Sole Nutrient Source in Soilless Horticulture—Or Spiked With Mineral Nutrients for Improved Plant Growth. Front. Plant Sci. 2022, 13, 770179. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K. Anaerobic Digestate Management for Carbon Neutrality and Fertilizer Use: A Review of Current Practices and Future Opportunities. Biomass Bioenergy 2024, 180, 106991. [Google Scholar] [CrossRef]
- Kgwedi, P.C.; Seedat, N.; Fajimi, L.I.; Patel, B.; Oboirien, B.O. Techno-Economic Analysis of Methanol Synthesis from Syngas Derived from Steam Reforming of Crude Glycerol. Biomass Convers. Biorefin. 2023, 13, 16179–16196. [Google Scholar] [CrossRef]
- Mulchandani, A.; Westerhoff, P. Recovery Opportunities for Metals and Energy from Sewage Sludges. Bioresour. Technol. 2016, 215, 215–226. [Google Scholar] [CrossRef]
- Zhang, L.; Lim, E.Y.; Loh, K.C.; Ok, Y.S.; Lee, J.T.E.; Shen, Y.; Wang, C.H.; Dai, Y.; Tong, Y.W. Biochar Enhanced Thermophilic Anaerobic Digestion of Food Waste: Focusing on Biochar Particle Size, Microbial Community Analysis and Pilot-Scale Application. Energy Convers. Manag. 2020, 209, 112654. [Google Scholar] [CrossRef]
- Rida Galaly, A.; Van Oost, G.; Dawood, N. Sustainable Plasma Gasification Treatment of Plastic Waste: Evaluating Environmental, Economic, and Strategic Dimensions. ACS Omega 2024, 9, 21174–21186. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Hao, H.; Wang, Y.; Zhu, C.; Wang, X. Plasma Pyrolysis of Biomass for Production of Gaseous Fuel to Generate Electricity. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- Oumabady, S.; Ramasamy, S.P.; Paul Sebastian, S.; Rajagopal, R.; Obulisamy, P.K.; Doherty, R.; Nanukuttan, S.; Bhardwaj, S.K.; Kumaresan, D. Sustainable Resource Recovery and Process Improvement in Anaerobic Digesters Using Hydrochar: A Circular Bio-Economic Perspective. J. Sustain. Agric. Environ. 2023, 2, 328–336. [Google Scholar] [CrossRef]
- Zielińska, M.; Cydzik-Kwiatkowska, A. Effect of Emerging Micropollutants on the Anaerobic Digestion of Sewage Sludge. Energies 2024, 17, 1033. [Google Scholar] [CrossRef]
- Wang, J.; Liang, J.; Sun, L.; Li, G.; Temmink, H.; Rijnaarts, H.H.M. Granule-Based Immobilization and Activity Enhancement of Anammox Biomass via PVA/CS and PVA/CS/Fe Gel Beads. Bioresour. Technol. 2020, 309, 123448. [Google Scholar] [CrossRef]
- Amalina, F.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Pristine and Modified Biochar Applications as Multifunctional Component towards Sustainable Future: Recent Advances and New Insights. Sci. Total Environ. 2024, 914, 169608. [Google Scholar] [CrossRef]
Absorbent Composition | Methodology | Characterization Techniques | Dyes | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|
PVA/L-cysteine | Doehlert experimental design | FTIR, elemental analysis, SEM, AFM, and TGA analysis | Crystal Violet | 197 | [44] |
Zeolitic imidazole framework-8-PVA/CTS | freeze-drying and situ growth | FT-IR and XRD | Congo Red | 1216.5 | [42] |
CTS/polyvinylpyrrolidone/PVA | Ultrasonic mixing, electrospinning | FTIR, XRD, SEM | Methylene blue | 13.27 | [21] |
EDTA/CTS | Solvent casting | XRD, FT-IR | Methyl orange | 305.4 | [29] |
PVA/CTS | Solvent casting | Modulated differential scanning calorimetry and thermogravimetric analysis, ATR-FTIR | Acid orange 7 | 678 | [22] |
CTS/polyvinylpyrrolidone/PVA | Ultrasonic mixing, electrospinning | FTIR, XRD, SEM | Malachite green | 17.86 | [21] |
CTS-PVA/fly ash | Solvent casting | XRD, SEM, FTIR | Reactive orange 16 | 123.8 | [34] |
Absorbent Composition | Methodology | Characterization Techniques | Heavy Metals | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|
PVA/CTS | Solvent casting | BET, TGA, FTIR, FE-SEM | Zn | 173.39 | [18] |
Xanthate-magnetic PVA/CTS | Instantaneous gelation method | FTIR, Raman, SEM, TGA, DSC, BET, XRD | Cd | 307 | [39] |
CTS/PVA | Fe3O4 nanoparticles: co-precipitation method | XRD, SEM, FTIR, TGA, BET | Cu | 243.90 | [40] |
Magnetic CTS/PVA | Gelation method | FTIR, SEM-EDX | Co | 14.39 | [23] |
CTS/PVA | Solvent casting | XRD and FTIR | Fe | 135.14 | [19] |
PVA/CTS/ A-Fe3O4 | -PVA/CS/A-Fe3O4 membrane: electrospinning process | SEM, TEM, and AFM analysis | Cr | 509.7 | [46] |
PVA/CTS | Solvent casting | FTIR, FE-SEM BET, TGA | Ni | 209.08 | [18] |
PVA/CTS | Fe3O4 nanoparticles | FTIR and SEM-EDAX | Co | 14.39 | [23] |
EDTA/CTS | Solvent casting | XRD, FT-IR | Zn | 50.8 | [29] |
CTS/PVA/CuO | Precipitation into anti-solvent | XRD, FTIR, SEM with EDS, TEM | Pb | 116.84 | [35] |
CTS/PVA | Iron oxide nanoparticles | XRD, SEM, and FTIR | Cu | 500 | [33] |
CTS/polyvinylpyrrolidone/PVA | Ultrasonic mixing, electrospinning | FTIR, XRD, SEM and BET | Ni | 25.24 | [21] |
PVA/CTS | Solvent casting | FE-SEM BET, TGA, FTIR | Cu | 303.29 | [18] |
CTS/PVA resin | Fe3O4 nanoparticles: co-precipitation method | FTIR, TGA, BET, XRD, SEM | Fe | 87.72 | [40] |
CTS/PVA | Solvent casting | FTIR and XRD | Zn | 222.21 | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, P.F.; Zhang, T.L.; Maurice, N.J.; Claire, M.J.; Gentil, B.; Memon, A.G.; Giwa, A.S. Impacts of Polyvinyl Alcohol and Chitosan-Modified Biochar on the Anaerobic Digestion of Sewage Sludge and Valuable Resource Recovery. Processes 2024, 12, 1987. https://doi.org/10.3390/pr12091987
Chiang PF, Zhang TL, Maurice NJ, Claire MJ, Gentil B, Memon AG, Giwa AS. Impacts of Polyvinyl Alcohol and Chitosan-Modified Biochar on the Anaerobic Digestion of Sewage Sludge and Valuable Resource Recovery. Processes. 2024; 12(9):1987. https://doi.org/10.3390/pr12091987
Chicago/Turabian StyleChiang, Ping Fa, Teng Ling Zhang, Ndungutse Jean Maurice, Mugabekazi Joie Claire, Bigirimana Gentil, Abdul Ghaffar Memon, and Abdulmoseen Segun Giwa. 2024. "Impacts of Polyvinyl Alcohol and Chitosan-Modified Biochar on the Anaerobic Digestion of Sewage Sludge and Valuable Resource Recovery" Processes 12, no. 9: 1987. https://doi.org/10.3390/pr12091987
APA StyleChiang, P. F., Zhang, T. L., Maurice, N. J., Claire, M. J., Gentil, B., Memon, A. G., & Giwa, A. S. (2024). Impacts of Polyvinyl Alcohol and Chitosan-Modified Biochar on the Anaerobic Digestion of Sewage Sludge and Valuable Resource Recovery. Processes, 12(9), 1987. https://doi.org/10.3390/pr12091987