Open-Air Processing of Mechanically Robust Metal Halide Perovskites with Controllable Thicknesses above 10 µm
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Z.; Padture, N.P. Challenges and Opportunities for the Mechanical Reliability of Metal Halide Perovskites and Photovoltaics. Nat. Energy 2023, 8, 1319–1327. [Google Scholar] [CrossRef]
- Dai, Z.; Doyle, M.C.; Liu, X.; Hu, M.; Wang, Q.; Athanasiou, C.E.; Liu, Y.; Sheldon, B.W.; Gao, H.; Liu, S.; et al. The Mechanical Behavior of Metal-Halide Perovskites: Elasticity, Plasticity, Fracture, and Creep. Scr. Mater. 2023, 223, 115064. [Google Scholar] [CrossRef]
- Dai, Z.; Yadavalli, S.K.; Hu, M.; Chen, M.; Zhou, Y.; Padture, N.P. Effect of Grain Size on the Fracture Behavior of Organic-Inorganic Halide Perovskite Thin Films for Solar Cells. Scr. Mater. 2020, 185, 47–50. [Google Scholar] [CrossRef]
- Li, M.; Johnson, S.; Gil-Escrig, L.; Sohmer, M.; Figueroa Morales, C.A.; Kim, H.; Sidhik, S.; Mohite, A.; Gong, X.; Etgar, L.; et al. Strategies to Improve the Mechanical Robustness of Metal Halide Perovskite Solar Cells. Energy Adv. 2023, 3, 273–280. [Google Scholar] [CrossRef]
- Seong, S.; Liu, Y.; Gong, X. Mechanical Study of Perovskite Solar Cells: Opportunities and Challenges for Wearable Power Source. Opt. Mater. Express 2022, 12, 772. [Google Scholar] [CrossRef]
- McAndrews, G.R.; Guo, B.; Morales, D.A.; Amassian, A.; McGehee, M.D. How the Dynamics of Attachment to the Substrate Influence Stress in Metal Halide Perovskites. APL Energy 2023, 1, 036110. [Google Scholar] [CrossRef]
- Ahmad, M.; Cartledge, C.; McAndrews, G.; Giuri, A.; McGehee, M.D.; Rizzo, A.; Rolston, N. Tuning Film Stresses for Open-Air Processing of Stable Metal Halide Perovskites. ACS Appl. Mater. Interfaces 2023, 15, 51117–51125. [Google Scholar] [CrossRef]
- Yadavalli, S.K.; Chen, M.; Hu, M.; Dai, Z.; Zhou, Y.; Padture, N.P. Electron-Beam-Induced Cracking in Organic-Inorganic Halide Perovskite Thin Films. Scr. Mater. 2020, 187, 88–92. [Google Scholar] [CrossRef]
- Ramirez, C.; Yadavalli, S.K.; Garces, H.F.; Zhou, Y.; Padture, N.P. Thermo-Mechanical Behavior of Organic-Inorganic Halide Perovskites for Solar Cells. Scr. Mater. 2018, 150, 36–41. [Google Scholar] [CrossRef]
- Rolston, N.; Scheideler, W.J.; Flick, A.C.; Chen, J.P.; Elmaraghi, H.; Sleugh, A.; Zhao, O.; Woodhouse, M.; Dauskardt, R.H. Rapid Open-Air Fabrication of Perovskite Solar Modules. Joule 2020, 4, 2675–2692. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S.M.; et al. All-Perovskite Tandem Solar Cells with Improved Grain Surface Passivation. Nature 2022, 603, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Peters, I.M.; Hauch, J.; Brabec, C.; Sinha, P. The Value of Stability in Photovoltaics. Joule 2021, 5, 3137–3153. [Google Scholar] [CrossRef]
- Yan, J.; Savenije, T.J.; Mazzarella, L.; Isabella, O. Progress and Challenges on Scaling up of Perovskite Solar Cell Technology. Sustain. Energy Fuels 2022, 6, 243–266. [Google Scholar] [CrossRef]
- Deokate, R. Spin Coating/Doctor-Blading/Self-Assembly of Metal Oxide Nanostructures. In Solution Methods for Metal Oxide Nanostructures; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Srivastava, A.; Satrughna, J.A.K.; Tiwari, M.K.; Kanwade, A.; Yadav, S.C.; Bala, K.; Shirage, P.M. Lead Metal Halide Perovskite Solar Cells: Fabrication, Advancement Strategies, Alternatives, and Future Perspectives. Mater. Today Commun. 2023, 35, 105686. [Google Scholar] [CrossRef]
- Jiao, J.; Yang, C.; Wang, Z.; Yan, C.; Fang, C. Solvent Engineering for the Formation of High-Quality Perovskite Films: A Review. Results Eng. 2023, 18, 101158. [Google Scholar] [CrossRef]
- Geistert, K.; Ternes, S.; Ritzer, D.B.; Paetzold, U.W. Controlling Thin Film Morphology Formation during Gas Quenching of Slot-Die Coated Perovskite Solar Modules. ACS Appl. Mater. Interfaces 2023, 15, 52519–52529. [Google Scholar] [CrossRef]
- Fievez, M.; Singh Rana, P.J.; Koh, T.M.; Manceau, M.; Lew, J.H.; Jamaludin, N.F.; Ghosh, B.; Bruno, A.; Cros, S.; Berson, S.; et al. Slot-Die Coated Methylammonium-Free Perovskite Solar Cells with 18% Efficiency. Sol. Energy Mater. Sol. Cells 2021, 230, 111189. [Google Scholar] [CrossRef]
- Vesce, L.; Stefanelli, M.; Rossi, F.; Castriotta, L.A.; Basosi, R.; Parisi, M.L.; Sinicropi, A.; Di Carlo, A. Perovskite Solar Cell Technology Scaling-up: Eco-Efficient and Industrially Compatible Sub-Module Manufacturing by Fully Ambient Air Slot-Die/Blade Meniscus Coating. Prog. Photovolt. Res. Appl. 2024, 32, 115–129. [Google Scholar] [CrossRef]
- Shen, D.; Luo, C.; Zheng, R.; Li, Q.; Chen, Y. Improvement of Photoluminescence Intensity and Film Morphology of Perovskite by Ionic Liquids Additive. In Proceedings of the E3S Web of Conferences, Hyderabad, India, 24–26 September 2021; EDP Sciences: Les Ulis, France, 2021; Volume 257. [Google Scholar]
- Giuri, A.; Rolston, N.; Colella, S.; Listorti, A.; Esposito Corcione, C.; Elmaraghi, H.; Lauciello, S.; Dauskardt, R.H.; Rizzo, A. Robust, High-Performing Maize-Perovskite-Based Solar Cells with Improved Stability. ACS Appl. Energy Mater. 2021, 4, 11194–11203. [Google Scholar] [CrossRef] [PubMed]
- Hamukwaya, S.L.; Hao, H.; Zhao, Z.; Dong, J.; Zhong, T.; Xing, J.; Hao, L.; Mashingaidze, M.M. A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings 2022, 12, 252. [Google Scholar] [CrossRef]
- Sun, W.; Choy, K.L.; Wang, M. The Role of Thickness Control and Interface Modification in Assembling Efficient Planar Perovskite Solar Cells. Molecules 2019, 24, 3466. [Google Scholar] [CrossRef]
- Park, J.Y.; Song, R.; Liang, J.; Jin, L.; Wang, K.; Li, S.; Shi, E.; Gao, Y.; Zeller, M.; Teat, S.J.; et al. Thickness Control of Organic Semiconductor-Incorporated Perovskites. Nat. Chem. 2023, 15, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, Y.; Shi, B.; Yao, X.; Fan, L.; Zhao, S.; Liang, J.; Ding, Y.; Wei, C.; Zhang, D.; et al. Tailoring Morphology and Thickness of Perovskite Layer for Flexible Perovskite Solar Cells on Plastics: The Role of CH3NH3I Concentration. Sol. Energy 2017, 147, 222–227. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, C.; Li, D.; Zhang, X.; Zhu, J.; Wu, M.; Liu, W.; Shi, T.; He, X.; Wang, J.; et al. Dynamic X-Ray Imaging with Screen-Printed Perovskite CMOS Array. Nat. Commun. 2024, 15, 1588. [Google Scholar] [CrossRef]
- Kakavelakis, G.; Gedda, M.; Panagiotopoulos, A.; Kymakis, E.; Anthopoulos, T.D.; Petridis, K. Metal Halide Perovskites for High-Energy Radiation Detection. Adv. Sci. 2020, 7, 2002098. [Google Scholar] [CrossRef]
- Huang, K.W.; Li, M.H.; Chen, Y.T.; Wen, Z.X.; Lin, C.F.; Chen, P. Fast Fabrication of Μm-Thick Perovskite Films by Using a One-Step Doctor-Blade Coating Method for Direct X-Ray Detectors. J. Mater. Chem. C Mater. 2023, 12, 1533–1542. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Evans, J.; Simmonds, D.J. Material Change for X-ray Detectors; Macmillan Publishers Limited: New York, NY, USA, 2014; Volume 42. [Google Scholar]
- Li, G.; Zhao, C.; Liu, Y.; Ren, J.; Zhang, Z.; Di, H.; Jiang, W.; Mei, J.; Zhao, Y. High-Performance Perovskite Betavoltaics Employing High-Crystallinity MAPbBr3Films. ACS Omega 2021, 6, 20015–20025. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.Y.; Jeong, D.N.; Seo, J.Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.G. Printable Organometallic Perovskite Enables Large-Area, Low-Dose X-Ray Imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Romano, V.; Agresti, A.; Verduci, R.; D’Angelo, G. Advances in Perovskites for Photovoltaic Applications in Space. ACS Energy Lett. 2022, 7, 2490–2514. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Nickel, N.H.; Bundesmann, J.; Seidel, S.; Denker, A.; Albrecht, S.; Brus, V.V.; Rappich, J.; Rech, B.; Landi, G.; et al. Radiation Hardness and Self-Healing of Perovskite Solar Cells. Adv. Mater. 2016, 28, 8726–8731. [Google Scholar] [CrossRef]
- Dailey, M.; Li, Y.; Printz, A.D. Residual Film Stresses in Perovskite Solar Cells: Origins, Effects, and Mitigation Strategies. ACS Omega 2021, 6, 30214–30223. [Google Scholar] [CrossRef]
- Luo, Q.; Jones, A.H. High-Precision Determination of Residual Stress of Polycrystalline Coatings Using Optimised XRD-Sin2ψ Technique. Surf. Coat. Technol. 2010, 205, 1403–1408. [Google Scholar] [CrossRef]
- Photon, E. Leverage the Power of Hyperspectral Microscopy. Available online: https://www.photonetc.com/products/ima (accessed on 26 June 2024).
- Giuri, A.; Masi, S.; Listorti, A.; Gigli, G.; Colella, S.; Esposito Corcione, C.; Rizzo, A. Polymeric Rheology Modifier Allows Single-Step Coating of Perovskite Ink for Highly Efficient and Stable Solar Cells. Nano Energy 2018, 54, 400–408. [Google Scholar] [CrossRef]
- Rolston, N.; Printz, A.D.; Tracy, J.M.; Weerasinghe, H.C.; Vak, D.; Haur, L.J.; Priyadarshi, A.; Mathews, N.; Slotcavage, D.J.; McGehee, M.D.; et al. Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1702116. [Google Scholar] [CrossRef]
- Watson, B.L.; Rolston, N.; Printz, A.D.; Dauskardt, R.H. Scaffold-Reinforced Perovskite Compound Solar Cells. Energy Environ. Sci. 2017, 10, 2500–2508. [Google Scholar] [CrossRef]
- Ouslimane, T.; Et-taya, L.; Elmaimouni, L.; Benami, A. Impact of Absorber Layer Thickness, Defect Density, and Operating Temperature on the Performance of MAPbI3 Solar Cells Based on ZnO Electron Transporting Material. Heliyon 2021, 7, e06379. [Google Scholar] [CrossRef]
- Son, C.; Son, H.; Jeong, B.-S. Enhanced Conversion Efficiency in MAPbI3 Perovskite Solar Cells through Parameters Optimization via SCAPS-1D Simulation. Appl. Sci. 2024, 14, 2390. [Google Scholar] [CrossRef]
- Rai, M.; Wong, L.H.; Etgar, L. Effect of Perovskite Thickness on Electroluminescence and Solar Cell Conversion Efficiency. J. Phys. Chem. Lett. 2020, 11, 8189–8194. [Google Scholar] [CrossRef]
- Shi, P.; Xu, J.; Yavuz, I.; Huang, T.; Tan, S.; Zhao, K.; Zhang, X.; Tian, Y.; Wang, S.; Fan, W.; et al. Strain Regulates the Photovoltaic Performance of Thick-Film Perovskites. Nat. Commun. 2024, 15, 2579. [Google Scholar] [CrossRef]
- Tan, J.; Gao, X.; Huang, X.; Wangyang, P.; Sun, H.; Yang, D.; Zeng, T. Self-Powered X-Ray Detector Based on Lead Halide Perovskites under Electric Field Poling Effect. J. Mater. Sci. Mater. Electron. 2023, 34, 1199. [Google Scholar] [CrossRef]
- Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G.J.; Azimi, H.; Brabec, C.J.; Stangl, J.; Kovalenko, M.V.; et al. Detection of X-Ray Photons by Solution-Processed Lead Halide Perovskites. Nat. Photonics 2015, 9, 444–449. [Google Scholar] [CrossRef]
- Dally, P.; Messou, D.; Robillard, M.; Cacovich, S.; Yaiche, A.; Rousset, J.; Etcheberry, A.; Bouttemy, M. Probing the Chemistry of Perovskite Systems by XPS and GD-OES Depth-Profiling: Potentials and Limitations. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Miami, FL, USA, 20–25 June 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 931–934. [Google Scholar]
- Zheng, D.; Volovitch, P.; Pauporté, T. What Can Glow Discharge Optical Emission Spectroscopy (GD-OES) Technique Tell Us about Perovskite Solar Cells? Small Methods 2022, 6, e2200633. [Google Scholar] [CrossRef]
- Rolston, N.; Bush, K.A.; Printz, A.D.; Gold-Parker, A.; Ding, Y.; Toney, M.F.; McGehee, M.D.; Dauskardt, R.H. Engineering Stress in Perovskite Solar Cells to Improve Stability. Adv. Energy Mater. 2018, 8, 1802139. [Google Scholar] [CrossRef]
- Goetz, K.P.; Taylor, A.D.; Paulus, F.; Vaynzof, Y. Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Adv Funct Mater 2020, 30, 1910004. [Google Scholar] [CrossRef]
- Cartledge, C.; Penukula, S.; Giuri, A.; Bakshi, K.; Ahmad, M.; Mahaffey, M.; Li, M.; Zhang, R.; Rizzo, A.; Rolston, N. Scalable and Quench-Free Processing of Metal Halide Perovskites in Ambient Conditions. Energies 2024, 17, 1455. [Google Scholar] [CrossRef]
- Bisconti, F.; Leoncini, M.; Bravetti, G.; Giuri, A.; Polimeno, L.; Carallo, S.; Colella, S.; Gatto, L.; Grandi, F.; Cinquanta, E.; et al. Blocking Wide Bandgap Mixed Halide Perovskites’ Decomposition through Polymer Inclusion. J. Mater. Chem. C Mater. 2023, 11, 12213–12221. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, T.; Burlingame, Q.C.; Liu, T.; Holleyiii, R.; Cheng, G.; Yao, N.; Gao, F.; Loo, Y.-L. Accelerated Aging of All-Inorganic, Interface-Stabilized Perovskite Solar Cells. Science 2022, 377, 307–310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakshi, K.; Li, M.; Ahmad, M.; Mahaffey, M.; Rolston, N. Open-Air Processing of Mechanically Robust Metal Halide Perovskites with Controllable Thicknesses above 10 µm. Processes 2024, 12, 1901. https://doi.org/10.3390/pr12091901
Bakshi K, Li M, Ahmad M, Mahaffey M, Rolston N. Open-Air Processing of Mechanically Robust Metal Halide Perovskites with Controllable Thicknesses above 10 µm. Processes. 2024; 12(9):1901. https://doi.org/10.3390/pr12091901
Chicago/Turabian StyleBakshi, Kayshavi, Muzhi Li, Muneeza Ahmad, Mason Mahaffey, and Nicholas Rolston. 2024. "Open-Air Processing of Mechanically Robust Metal Halide Perovskites with Controllable Thicknesses above 10 µm" Processes 12, no. 9: 1901. https://doi.org/10.3390/pr12091901
APA StyleBakshi, K., Li, M., Ahmad, M., Mahaffey, M., & Rolston, N. (2024). Open-Air Processing of Mechanically Robust Metal Halide Perovskites with Controllable Thicknesses above 10 µm. Processes, 12(9), 1901. https://doi.org/10.3390/pr12091901