Numerical Study on the Heat Dissipation Performance of Diamond Microchannels under High Heat Flux Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.2. Numerical Model and Boundary Condition
2.2.1. Geometric Model Settings
2.2.2. Grid Independence Analysis
2.2.3. Validation
3. Results and Discussion
3.1. The Influence of Material Physical Properties on the Heat Dissipation Performance of Microchannels
3.1.1. Comparison of Heat Dissipation Performance of Different Microchannel Materials
3.1.2. Exploration of Diamond Thermal Conductivity on Microchannel Heat Dissipation Performance
3.2. Analysis of the Influence of Microchannel Geometry on Heat Dissipation Performance
3.2.1. Research on Influence of Cross-Sectional Shape of Flow Channel on Heat Dissipation Performance
3.2.2. Research on Influence of Channel Geometry on Heat Dissipation Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Meaning |
ρ | Density of the diamond substrate or coolant |
Cp | Specific heat capacity of the diamond substrate or coolant |
Q | Heat source |
k | Thermal conductivity of the diamond substrate or coolant |
u | Flow velocity of the coolant |
p | Pressure of the coolant |
I | Second-order unit tensor |
F | Volumetric force exerted on the coolant as a whole |
K | Viscous stress tensor |
μ | Dynamic viscosity of the coolant |
nGaN/nDia | Normal unit vectors of the contact surface between diamond and GaN |
TDia | Temperature of the diamond layer |
TGaN | Temperature of the GaN layer |
heq | Equivalent interfacial thermal conductivity |
Req | Equivalent thermal resistance value |
L | Horizontal length |
W | Horizontal width |
H1 | GaN thickness |
H2 | - Grid division basis |
Lf | Width of microchannels |
δ | Microchannel spacing |
Hf | Microchannel height |
ki | Primary parameter controlling the geometric shape of diamond-shaped, i = 1, 2, 3, 4 |
Lmicro0 | Width at the inlet of the channel |
Lmicro1 | Channel width at half of the diamond-shaped (hourglass-shaped) microchannel’s length in the flow direction |
References
- Lakshminarayanan, V.; Sriraam, N. The effect of temperature on the reliability of electronic components. In Proceedings of the 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 6–7 January 2014; pp. 1–6. [Google Scholar]
- Anandan, S.S.; Ramalingam, V. Thermal management of electronics: A review of literature. Therm. Sci. 2008, 12, 5–26. [Google Scholar] [CrossRef]
- Viswanath, R.; Wakharkar, V.; Watwe, A.; Lebonheur, V. Thermal performance challenges from silicon to systems. Intel. Technol. J. 2000, 4, 1–16. [Google Scholar]
- Deng, Y.; Liu, J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. J. Electron. Packag. 2010, 132, 031009. [Google Scholar] [CrossRef]
- Khatibi, M.; Ashrafizadeh, S.N. Mitigating Joule heating in smart nanochannels: Evaluating the efficacy of AC vs. DC fields. Int. Commun. Heat Mass Transf. 2024, 154, 107448. [Google Scholar] [CrossRef]
- Peng, L.; Yu, H.; Chen, C.; He, Q.; Zhang, H.; Zhao, F.; Qin, M.; Feng, Y.; Feng, W. Tailoring dense, orientation–tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 2023, 10, 2205962. [Google Scholar] [CrossRef]
- Karimzadeh, M.; Khatibi, M.; Ashrafizadeh, S.N. Impacts of the temperature-dependent properties on ion transport behavior in soft nanochannels. Int. Commun. Heat Mass Transf. 2021, 129, 105728. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, Y.; Zhou, Y.; Qiu, M.; Li, Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 2023, 12, 246. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Wu, J.; Wei, D.; Guan, X. Coordinated Optimization for Energy Efficient Thermal Management of 5G Base Station Site. IFAC-Pap. 2022, 55, 102–107. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, X.; Tan, H.; Li, X. Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations. Energy 2022, 238, 122034. [Google Scholar] [CrossRef]
- Gao, X.; Han, X.; Zhao, Z.; Huang, N.-Y.; Jiao, K.; Song, P.; Zhu, J.; Wang, Y. Lewis functional nanodiamonds for efficient metal-free photocatalytic CO2 reduction. J. Mater. Chem. A 2024. [Google Scholar] [CrossRef]
- Zhao, X.; Su, L.; Jiang, J.; Deng, W.; Zhao, D. A review of working fluids and flow state effects on thermal performance of micro-channel oscillating heat pipe for aerospace heat dissipation. Aerospace 2023, 10, 179. [Google Scholar] [CrossRef]
- Gao, X.-W.; Zhao, Z.-W.; He, Y.; Fan, S.-F.; Jiao, K.-R.; Lou, S.-Y.; Han, X.-Y.; Song, P.-F.; Cai, R.; Hu, Z. Nanodiamond: A promising metal-free nanoscale material in photocatalysis and electrocatalysis. Rare Met. 2024, 43, 3501–3552. [Google Scholar] [CrossRef]
- COMSOL Multiphysics®, Version 6.2; COMSOL Multiphysics: Stockholm, Sweden, 2024.
- Tuckerman, D.B.; Pease, R.F.W. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981, 2, 126–129. [Google Scholar] [CrossRef]
- Qu, G.; Deng, Z.; Guo, W.; Peng, Z.; Jia, Q.; Deng, E.; Zhang, H. The heat-dissipation sintered interface of power chip and heat sink and its high-temperature thermal analysis. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 816–822. [Google Scholar] [CrossRef]
- He, Z.; Yan, Y.; Zhang, Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M. Thermal conductivity of diamond composites. Materials 2009, 2, 2467–2495. [Google Scholar] [CrossRef]
- Graebner, J.E. Thermal conductivity of diamond. In Diamond: Electronic Properties and Applications; Springer: New York, NY, USA, 1995; pp. 285–318. [Google Scholar]
- Qi, Z.; Zheng, Y.; Wei, J.; Yu, X.; Jia, X.; Liu, J.; Chen, L.; Miao, J.; Li, C. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement. Appl. Therm. Eng. 2020, 177, 115489. [Google Scholar] [CrossRef]
- Li, W.; Zhu, L.; Ji, F.; Yu, J.; Jin, Y.; Wang, W. Multi-Parameters Optimization for Diamond Microchannel Heat Sink. In Proceedings of the 2019 20th International Conference on Electronic Packaging Technology (ICEPT), Hong Kong, China, 12–15 August 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, J.; Huang, Y.; Zhu, X.; Fu, W.; Li, C.; Miao, J. A diamond made microchannel heat sink for high-density heat flux dissipation. Appl. Therm. Eng. 2019, 158, 113804. [Google Scholar] [CrossRef]
- Junlei, T.; Jiadong, S.; Liangxian, C.; Jinlong, L.; Chengming, L.; Junjun, W. Surface termination of the diamond microchannel and single-phase heat transfer performance. Int. J. Heat Mass Transf. 2022, 199, 123481. [Google Scholar] [CrossRef]
- Sarma, P.; Patowari, P.K. A Review on Fluid Flow and Mixing in Microchannel and their Design and Manufacture for Microfluidic Applications. Micro Nanosyst. 2023, 15, 167–184. [Google Scholar] [CrossRef]
- Xiang, J.; Deng, L.; Zhou, C.; Zhao, H.; Huang, J.; Tao, S. Heat transfer performance and structural optimization of a novel micro-channel heat sink. Chin. J. Mech. Eng. 2022, 35, 38. [Google Scholar] [CrossRef]
- Xia, G.; Jiang, J.; Wang, J.; Zhai, Y.; Ma, D. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. Int. J. Heat Mass Transf. 2015, 80, 439–447. [Google Scholar] [CrossRef]
- Rajalingam, A.; Chakraborty, S. Effect of shape and arrangement of micro-structures in a microchannel heat sink on the thermo-hydraulic performance. Appl. Therm. Eng. 2021, 190, 116755. [Google Scholar] [CrossRef]
- Deng, D.; Pi, G.; Zhang, W.; Wang, P.; Fu, T. Numerical Study of Double-Layered Microchannel Heat Sinks with Different Cross-Sectional Shapes. Entropy 2018, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Ahmed, F.; Ali, H.; Rehman, Z.; Suleman, M.; Raouf, I. Effect of Cross-Sectional Geometry on Hydrothermal Behavior of Microchannel Heat Sink. J. Non-Equilib. Thermodyn. 2022, 47, 269–287. [Google Scholar] [CrossRef]
- Jing, D.; He, L. Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes. Int. J. Heat Mass Transf. 2019, 143, 118604. [Google Scholar] [CrossRef]
- Parlak, Z. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries. Heat Mass Transf. 2018, 54, 3317–3328. [Google Scholar] [CrossRef]
- Dai, Z.; Fletcher, D.F.; Haynes, B.S. Impact of tortuous geometry on laminar flow heat transfer in microchannels. Int. J. Heat Mass Transf. 2015, 83, 382–398. [Google Scholar] [CrossRef]
- Fedorov, A.G.; Viskanta, R. Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging. Int. J. Heat Mass Transf. 2000, 43, 399–415. [Google Scholar] [CrossRef]
- Cho, J.; Li, Z.; Bozorg-Grayeli, E.; Kodama, T.; Francis, D.; Ejeckam, F.; Faili, F.; Asheghi, M.; Goodson, K.E. Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 3, 79–85. [Google Scholar] [CrossRef]
- Cho, J.; Francis, D.; Altman, D.H.; Asheghi, M.; Goodson, K.E. Phonon conduction in GaN-diamond composite substrates. J. Appl. Phys. 2017, 121, 055105. [Google Scholar] [CrossRef]
- Zhou, Y.; Anaya, J.; Pomeroy, J.; Sun, H.; Gu, X.; Xie, A.; Beam, E.; Becker, M.; Grotjohn, T.A.; Lee, C. Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl. Mater. Interfaces 2017, 9, 34416–34422. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Kim, J.; Cho, J. The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices. Int. J. Heat Mass Transf. 2020, 158, 119992. [Google Scholar] [CrossRef]
- Goli, S.; Saha, S.K.; Agrawal, A. Hydrothermal and Second Law Analyses of Fluid Flow in Converging-Diverging (Hourglass) Microchannel. Heat Transf. Eng. 2023, 44, 277–302. [Google Scholar] [CrossRef]
- Goli, S.; Saha, S.K.; Agrawal, A. Thermo-fluidic behaviour of diamond and hourglass microchannels: Investigation from the second law viewpoint. Int. J. Heat Mass Transf. 2023, 205, 123886. [Google Scholar] [CrossRef]
- Goli, S.; Saha, S.K.; Agrawal, A. Study of hydrothermal transport phenomena and performance characteristics for a flow through a diamond (diverging-converging) microchannel. Therm. Sci. Eng. Prog. 2022, 29, 101195. [Google Scholar] [CrossRef]
Temperature (K) | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 |
0.7 μm (W/(m·K)) | 136 | 120 | 107 | 96 | 88 | 81 | 74 | 69 | 65 |
Material | Density (Kg/m3) | Specific Heat Capacity (J/(kg·K)) | Thermal Conductivity (W/(m·K)) | Dynamic Viscosity (mPa·s) | |
---|---|---|---|---|---|
GaN | 6150 | 670 | |||
Solid | Diamond | 3512 | 510 | 1800 | − |
Silicon | 2230 | 712 | 148 | − | |
Copper | 8920 | 390 | 400 | − | |
LTCC | 2500 | 900 | 3 | − | |
Aluminum | 2702 | 880 | 237 | − | |
Liquid | Deionized water | 1000 | 4200 | 0.61 | 1 |
Parameter | Value | Meaning |
---|---|---|
L | 3 mm | Horizontal length |
W | 3 mm | Horizontal width |
H1 | 0.7 μm | GaN thickness |
H2 | 1 μm | |
Lf | 120 μm | Width of microchannels |
δ | 150 μm | Microchannel spacing |
Hf | 300 μm | Microchannel height |
Grid Division | Part 1. Maximum Unit Size/(μm) | Part 2. Maximum Unit Size (μm) | Part 3. Maximum Unit Size (μm) |
---|---|---|---|
Plan A | 160 | 120 | 20 |
Plan B | 80 | 60 | 10 |
Plan C | 40 | 30 | 5 |
Plan D | 20 | 15 | 2 |
Grid Division | Plan A | Plan B | Plan C | Plan D |
---|---|---|---|---|
Maximum temperature (°C) | 90.4 °C | 88.34 °C | 88.32 °C | 88.32 °C |
Temperature (K) | 0–1 μm (W/(m·K)) | 1–5 μm (W/(m·K)) | 5–15 μm (W/(m·K)) | 15–35 μm (W/(m·K)) | 35–100 μm (W/(m·K)) |
---|---|---|---|---|---|
200 | 230 | 787 | 1545 | 2024 | 2642 |
250 | 286 | 873 | 1516 | 1845 | 2202 |
300 | 318 | 888 | 1387 | 1608 | 1815 |
350 | 333 | 858 | 1242 | 1395 | 1520 |
400 | 341 | 812 | 1110 | 1214 | 1298 |
450 | 343 | 761 | 992 | 1069 | 1131 |
500 | 334 | 708 | 889 | 950 | 998 |
550 | 327 | 658 | 809 | 859 | 886 |
600 | 319 | 619 | 744 | 782 | 814 |
650 | 309 | 587 | 697 | 730 | 753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhao, K.; Hao, X.; Li, Y.; Zhang, S.; Liu, B.; Dai, B.; Cao, W.; Zhu, J. Numerical Study on the Heat Dissipation Performance of Diamond Microchannels under High Heat Flux Density. Processes 2024, 12, 1675. https://doi.org/10.3390/pr12081675
Zhao J, Zhao K, Hao X, Li Y, Zhang S, Liu B, Dai B, Cao W, Zhu J. Numerical Study on the Heat Dissipation Performance of Diamond Microchannels under High Heat Flux Density. Processes. 2024; 12(8):1675. https://doi.org/10.3390/pr12081675
Chicago/Turabian StyleZhao, Jiwen, Kunlong Zhao, Xiaobin Hao, Yicun Li, Sen Zhang, Benjian Liu, Bing Dai, Wenxin Cao, and Jiaqi Zhu. 2024. "Numerical Study on the Heat Dissipation Performance of Diamond Microchannels under High Heat Flux Density" Processes 12, no. 8: 1675. https://doi.org/10.3390/pr12081675
APA StyleZhao, J., Zhao, K., Hao, X., Li, Y., Zhang, S., Liu, B., Dai, B., Cao, W., & Zhu, J. (2024). Numerical Study on the Heat Dissipation Performance of Diamond Microchannels under High Heat Flux Density. Processes, 12(8), 1675. https://doi.org/10.3390/pr12081675