Thermolytic Synthesis of Asphaltene-like Nitrogenous Bases and Study of Their Aggregative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects of Study
2.2. Methods
3. Results and Discussion
3.1. Effect of Quinoline as a Component of a Dispersion Medium on the Composition, Structure, and Aggregation Stability of Asphaltenes
3.2. Thermolytic Synthesis of Asphaltene-like Nitrogenous Bases at Various Temperatures
3.3. Composition, Structure, and Aggregation Stability of Asphaltene-like Nitrogenous Bases
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shatalova, N.V.; Apasov, T.K.; Shatalov, A.V.; Grigoriev, B.V. Renovation way to restore well productivity using wave fields. J. Min. Inst. 2022, 258, 986–997. [Google Scholar] [CrossRef]
- Chengzhi, Q.; Guzev, M.A.; Poplygin, V.V.; Kunitskikh, A.A. Predicting the permeability of the near-bottomhole zone during wave impact. J. Min. Inst. 2022, 258, 998–1007. [Google Scholar] [CrossRef]
- Podoprigora, D.; Byazrov, R.; Sytnik, J. The comprehensive overview of large-volume surfactant slugs injection for enhancing oil recovery: Status and the outlook. Energies 2022, 15, 8300. [Google Scholar] [CrossRef]
- Krivoshchekov, S.N.; Kochnev, A.A.; Ravelev, K.A. Development of an algorithm for determining the technological parameters of acid composition injection during treatment of the near-bottomhole zone, taking into account economic efficiency. J. Min. Inst. 2021, 250, 587–595. [Google Scholar] [CrossRef]
- Mullins, O.C.; Sheu, E.Y.; Hammami, A.; Marshall, A.G. Asphaltenes, Heavy Oils, and Petroleomics; Springer: New York, NY, USA, 2006; pp. 1–16. [Google Scholar]
- Abbas, H.A.; Manasrah, A.D.; Carbognani, L.; Sebakhy, K.O.; El Nokab, M.E.H.; Hacini, M.; Nassar, N.N. A study on the characteristics of Algerian Hassi-Messaoud asphaltenes: Solubility and precipitation. Pet. Sci. Technol. 2022, 40, 1279–1301. [Google Scholar] [CrossRef]
- Muraza, O.; Galadima, A. Aquathermolysis of heavy oil: A review and perspective on catalyst development. Fuel 2015, 157, 219–231. [Google Scholar] [CrossRef]
- Salenzadeh, M.; Husein, M.M.; Ghotbi, C.; Dabir, B.; Taghikhani, V. In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions. Fuel 2022, 324, 124525. [Google Scholar] [CrossRef]
- Groenzin, H.; Mullins, O.C. Molecular size and structure of asphaltenes from various sources. Energy Fuels 2000, 14, 677–684. [Google Scholar] [CrossRef]
- Mullins, O.C. The modified Yen model. Energy Fuels 2010, 24, 2179–2207. [Google Scholar] [CrossRef]
- Shuler, B.; Meyer, G.; Pena, D.; Mullins, O.C.; Gross, L. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. J. Am. Chem. Soc. 2015, 137, 9870–9876. [Google Scholar] [CrossRef]
- Acevedo, S.; Castro, A.; Negrin, J.G.; Fernandez, A.; Escobar, G.; Piscitelli, V.; Delolme, F.; Dessalces, G. Relations between asphaltene structures and their physical and chemical properties: The rosary-type structure. Energy Fuels 2007, 21, 2165–2175. [Google Scholar] [CrossRef]
- Sergun, V.P.; Cheshkova, T.V.; Sagachenko, T.A.; Min, R.S. Structural units with sulfur and ether/ester bonds in molecules of high- and low-molecular-weight asphaltenes of USA heavy oil. Pet. Chem. 2016, 56, 10–15. [Google Scholar] [CrossRef]
- McKenna, A.M.; Donald, L.J.; Fitzsimmons, J.E.; Juyal, P.; Spicer, V.; Standing, K.G.; Marshall, A.G.; Rodgers, R.P. Heavy petroleum composition. 3. Asphaltene aggregation. Energy Fuels 2013, 27, 1246–1256. [Google Scholar] [CrossRef]
- Akbarzadeh, K.; Hammami, A.; Kharrat, A.; Zhang, D.; Allenson, S.; Creek, J.; Kabir, S.; Jamaluddin, A.; Marshall, A.G.; Rodgers, R.P.; et al. Asphaltenes—Problematic but Rich in Potential. Oilfield Rev. 2007, 19, 22–43. [Google Scholar]
- Evdokimov, I.N.; Fesan, A.A.; Losev, A.P. New answers to the optical interrogation of asphaltenes: Monomers and primary aggregates from steady-state fluorescence studies. Energy Fuels 2016, 30, 4494–4503. [Google Scholar] [CrossRef]
- Li, X.; Chi, P.; Sun, Q. Effects of asphaltene concentration and asphaltene agglomeration on viscosity. Fuel 2019, 255, 115825. [Google Scholar] [CrossRef]
- Golubev, I.A.; Golubev, A.V.; Laptev, A.B. Practice of using the magnetic treatment devices to intensify the processes of primary oil treating. J. Min. Inst. 2020, 245, 554–560. [Google Scholar] [CrossRef]
- Javanbakht, G.; Sedghi, M.; Welch, W.; Goual, L.; Hoepfner, M.P. Molecular polydispersity improves prediction of asphaltene aggregation. J. Mol. Liq. 2018, 256, 382–394. [Google Scholar] [CrossRef]
- Korobov, G.Y.; Parfenov, D.V.; Van, T.N. Mechanism of the formation of asphalt-resin and paraffin deposits and factors influencing their intensity. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2023, 334, 103–116. [Google Scholar] [CrossRef]
- Nurgalieva, K.S.; Saychenko, L.A.; Riazi, M. Improving the efficiency of oil and gas wells complicated by the formation of asphalt-resin-paraffin deposits. Energies 2021, 14, 6673. [Google Scholar] [CrossRef]
- Rogachev, M.K.; Nguyen Van, T.; Aleksandrov, A.N. Technology for preventing the wax deposit formation in gas-lift wells at offshore oil and gas fields in Vietnam. Energies 2021, 14, 5016. [Google Scholar] [CrossRef]
- Martyanov, O.N.; Larichev, Y.V.; Morozov, E.V.; Trukhan, S.N.; Kazarian, S.G. The stability and evolution of oil systems studied via advanced methods in situ. Russ. Chem. Rev. 2017, 86, 999–1023. [Google Scholar] [CrossRef]
- Mullins, O.C.; Sabbah, H.; Eyssautier, J.; Pomerantz, A.E.; Barré, L.; Andrews, A.B.; Ruiz-Morales, Y.; Mostowfi, F.; McFarlane, R.; Goual, L.; et al. Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 2012, 26, 3986–4003. [Google Scholar] [CrossRef]
- Rogel, E. Studies on asphaltene aggregation via computational chemistry. Colloids Surf. A 1995, 104, 85–93. [Google Scholar] [CrossRef]
- Sheremata, J.M.; Gray, M.R.; Dettman, H.D.; McCaffrey, W.C. Quantitative molecular representation and sequential optimization of Athabasca asphaltenes. Energy Fuels 2004, 18, 1377–1384. [Google Scholar] [CrossRef]
- Gray, M.R.; Tykwinski, R.R.; Stryker, J.M.; Tan, X. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuels 2011, 25, 3125–3134. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Lai, C.H.; Kazarian, S.G. In situ chemical imaging of asphaltene precipitation from crude oil induced by n-heptane. Energy Fuels 2014, 28, 964–971. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Morozov, E.V.; Subramani, V.; Martyanov, O.N.; Kazarian, S.G. Chemical Visualization of Asphaltenes Aggregation Processes Studied in Situ with ATR-FTIR Spectroscopic Imaging and NMR Imaging. J. Phys. Chem. C 2015, 119, 2646–2660. [Google Scholar] [CrossRef]
- Ganeeva, Y.M.; Yusupova, T.N.; Romanov, G.V. Asphaltene nano-aggregates: Structure, phase transitions and effect on petroleum systems. Russ. Chem. Rev. 2011, 80, 993. [Google Scholar] [CrossRef]
- Efimov, I.; Smyshlyaeva, K.I.; Povarov, V.G.; Buzyreva, E.D.; Zhitkov, N.V.; Vovk, M.A.; Rudko, V.A. UNIFAC residual marine fuels stability prediction from NMR and elemental analysis of SARA components. Fuel 2023, 352, 129014. [Google Scholar] [CrossRef]
- Guzmán, R.; Ancheyta, J.; Trejo, F.; Rodríguez, S. Methods for determining asphaltene stability in crude oils. Fuel 2017, 188, 530–543. [Google Scholar] [CrossRef]
- Smyshlyaeva, K.I.; Rudko, V.A.; Kuzmin, K.A.; Povarov, V.G. Asphaltene genesis influence on the low-sulfur residual marine fuel sedimentation stability. Fuel 2022, 328, 125291. [Google Scholar] [CrossRef]
- Silva, H.S.; Sodero, A.C.; Bouyssiere, B.; Carrier, H.; Korb, J.; Alfarra, A.; Vallverdu, G.; Bégué, D.; Baraille, I. Molecular dynamics study of nanoaggregation in asphaltene mixtures: Effects of the N, O, and S heteroatoms. Energy Fuels 2016, 30, 5656–5664. [Google Scholar] [CrossRef]
- Sodero, A.C.; Silva, H.S.; Level, P.G.; Bouyssiere, B.; Korb, J.; Carrier, H.; Alfarra, A.; Bégué, D.; Baraille, I. Investigation of the effect of sulfur heteroatom on asphaltene aggregation. Energy Fuels 2016, 30, 4758–4766. [Google Scholar] [CrossRef]
- Mizuhara, J.; Liang, Y.; Masuda, Y.; Kobayashi, K.; Iwama, H.; Yonebayashi, H. Evaluation of Asphaltene Adsorption Free Energy at the Oil–Water Interface: Role of Heteroatoms. Energy Fuels 2020, 34, 5267–5280. [Google Scholar] [CrossRef]
- Lyulin, S.V.; Glova, A.D.; Falkovich, S.G.; Ivanov, V.A.; Nazarychev, V.M.; Lyulin, A.V.; Larin, S.V.; Antonov, S.V.; Ganan, P.; Kenny, J.M. Computer Simulation of Asphaltenes. Pet. Chem. 2018, 58, 983–1004. [Google Scholar] [CrossRef]
- Ekramipooya, A.; Valadi, F.M.; Farisabadi, A.; Gholami, M.R. Effect of the heteroatom presence in different positions of the model asphaltene structure on the self-aggregation: MD and DFT study. J. Mol. Liq. 2021, 334, 116109. [Google Scholar] [CrossRef]
- Takanohashi, T.; Sato, S.; Tanaka, R. Structural relaxation behaviors of three different asphaltenes using MD calculations. Pet. Sci. Technol. 2004, 22, 901–914. [Google Scholar] [CrossRef]
- Ramírez, L.; Moncayo-Riascos, I.; Cortés, F.B.; Franco, C.A.; Ribadeneira, R. Molecular dynamics study of the aggregation behavior of polycyclic aromatic hydrocarbon molecules in n-heptane–toluene mixtures: Assessing the heteroatom content effect. Energy Fuels 2021, 35, 3119–3129. [Google Scholar] [CrossRef]
- Sedghi, M.; Goual, L.; Welch, W.; Kubelka, J. Effect of asphaltene structure on association and aggregation using molecular dynamics. J. Phys. Chem. B 2013, 117, 5765–5776. [Google Scholar] [CrossRef]
- Yaseen, S.; Mansoori, G.A. Asphaltene aggregation due to waterflooding (A molecular dynamics study). J. Petrol. Sci. Eng. 2018, 170, 177–183. [Google Scholar] [CrossRef]
- Cheshkova, T.V.; Sergun, V.P.; Kovalenko, E.Y.; Gerasimova, N.N.; Sagachenko, T.A.; Min, R.S. Resins and Asphaltenes of Light and Heavy Oils: Their Composition and Structure. Energy Fuels 2019, 33, 7971–7982. [Google Scholar] [CrossRef]
- Ayurova, A.M.; Gerasimova, N.N.; Sagachenko, T.A. High- and low-molecular nitrogenous bases in highly paraffinic oils. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2017, 328, 28–35. [Google Scholar]
- Kovalenko, E.Y.; Sagachenko, T.A.; Min, R.S. Effect of nitrogen compounds in oil on formation of asphaltene aggregates. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2016, 327, 119–126. [Google Scholar]
- Larichev, Y.V.; Kovalenko, E.Y.; Martyanov, O.N. Effect of Nitrogen Bases on the Structure of Primary Asphaltene Clusters and Dynamics of Aggregation of Heavy Oil Fractions. Pet. Chem. 2019, 59, 1195–1200. [Google Scholar] [CrossRef]
- Urazov, K.K.; Sviridenko, N.N.; Iovik, Y.A.; Kolobova, E.N.; Grabchenko, M.V.; Kurzina, I.A.; Mukhamatdinov, I.I. Effect of hydrogen-donor of heavy crude oil catalytic aquathermolysis in the presence of a nickel-based catalyst. Catalysts 2022, 12, 1154. [Google Scholar] [CrossRef]
- Yan, Y.; de Klerk, A.; Prado, G.H.C. Visbreaking of Vacuum Residue Deasphalted Oil: New Asphaltenes Formation. Energy Fuels 2020, 34, 5135–5147. [Google Scholar] [CrossRef]
- Urazov, K.K.; Sviridenko, N.N. NiO based catalysts obtained “in-situ” for heavy crude oil upgrading: Effect of NiO precursor on the catalytic cracking products composition. J. Taiwan Inst. Chem. Eng. 2021, 127, 151–156. [Google Scholar] [CrossRef]
Object of Study | Abbreviation | Quinoline Content, % wt. | Nitrogen Content, % wt. |
---|---|---|---|
Initial crude oil | P0 | - | 0.4 |
Model petroleum system 1 | P1 | 5.5 | 1.0 |
Model petroleum system 2 | P2 | 14.6 | 2.0 |
Model petroleum system 3 | P3 | 23.8 | 3.0 |
Elemental Composition, % wt. | Group Composition, % wt. | ||||||
---|---|---|---|---|---|---|---|
C | H | N | S | O | Hydrocarbons | Resins | Asphaltenes |
81.67 | 12.38 | 0.41 | 4.01 | 1.53 | 64.69 | 24.06 | 11.25 |
Parameters | Object | |||
---|---|---|---|---|
A0 | A1 | A2 | A3 | |
MW, amu | 1368 | 1640 | 1725 | 2018 |
Elemental composition, % wt. | ||||
C | 82.17 | 82.89 | 82.82 | 82.91 |
H | 7.96 | 8.04 | 7.88 | 7.91 |
Nbas | 1.39 | 1.72 | 2.14 | 2.69 |
S | 4.18 | 3.98 | 3.89 | 3.80 |
O | 4.30 | 3.37 | 3.27 | 2.69 |
Distribution of carbon among structural fragments of asphaltenes, % | ||||
fa | 47.3 | 47.6 | 48.6 | 49.2 |
fn | 19.4 | 20.7 | 21.6 | 21.3 |
fp | 33.3 | 31.7 | 29.8 | 29.5 |
Parameters | Object | |||
---|---|---|---|---|
A’0 | A’1 | A’2 | A’3 | |
MW, amu | 615 | 771 | 715 | 690 |
Nbas, % wt. | 1.95 | 2.35 | 2.49 | 2.04 |
Distribution of carbon among structural fragments of asphaltenes, % | ||||
fa | 65.2 | 67.1 | 67.4 | 67.8 |
fn | 21.5 | 21.2 | 21.4 | 21.2 |
fp | 13.3 | 11.7 | 11.2 | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korneev, D.; Fialkovsky, I. Thermolytic Synthesis of Asphaltene-like Nitrogenous Bases and Study of Their Aggregative Stability. Processes 2024, 12, 1448. https://doi.org/10.3390/pr12071448
Korneev D, Fialkovsky I. Thermolytic Synthesis of Asphaltene-like Nitrogenous Bases and Study of Their Aggregative Stability. Processes. 2024; 12(7):1448. https://doi.org/10.3390/pr12071448
Chicago/Turabian StyleKorneev, Dmitry, and Igor Fialkovsky. 2024. "Thermolytic Synthesis of Asphaltene-like Nitrogenous Bases and Study of Their Aggregative Stability" Processes 12, no. 7: 1448. https://doi.org/10.3390/pr12071448
APA StyleKorneev, D., & Fialkovsky, I. (2024). Thermolytic Synthesis of Asphaltene-like Nitrogenous Bases and Study of Their Aggregative Stability. Processes, 12(7), 1448. https://doi.org/10.3390/pr12071448