Fabrication of NiO-CuO/RGO Composite for Lithium Storage Property
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Characterization
2.3. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, M.G.; Cho, J. Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries. Adv. Funct. Mater. 2009, 19, 1497–1514. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.X.; Lee, J.T.; Yushin, G.; Lee, G. Yushin, Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Yoo, H.D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 2014, 17, 110–121. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Fang, J.; Yuan, Y.F.; Wang, L.K.; Ni, H.L.; Zhu, H.L.; Gui, J.S.; Yang, J.L.; Chen, Y.B.; Guo, S.Y. Hierarchical ZnO@NiO core–shell nanorod array as high performance anode material for lithium-ion batteries. Mater. Lett. 2013, 111, 1–4. [Google Scholar] [CrossRef]
- Cao, T.; Fang, D.; Liu, L.; Luo, Z.; Wang, Q.; Dong, L.; Xiong, C. Nanosheets-based ZnO–NiO microspheres for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2015, 26, 5279–5286. [Google Scholar] [CrossRef]
- Xiong, Q.Q.; Tu, J.P.; Xia, X.H.; Zhao, X.Y.; Gu, C.D.; Wang, X.L. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: A new class of anode for high-performance lithium-ion batteries. Nanoscale 2013, 5, 7906–7912. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, R.; Yang, Y.; Liu, C.; Yuan, A.; Yang, H.; Shen, X. Cyanometallic frameworks derived hierarchical porous Fe2O3/NiO microflowers with excellent lithium-storage property. J. Alloys Compd. 2017, 698, 469–475. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuo, Q.; Lv, X.; Ma, Y.; Zhong, J.; Sun, X. NiO-Co3O4 nanoplate composite as efficient anode in Li-ion battery. Electrochim. Acta 2015, 178, 590–596. [Google Scholar] [CrossRef]
- Zhong, Y.; Huang, H.; Wang, K.; He, Z.; Zhu, S.; Chang, L.; Shao, H.; Wang, J.; Cao, C.-N. NiO@MnO2 core–shell composite microtube arrays for high-performance lithium ion batteries. RSC Adv. 2017, 7, 4840–4847. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Z.-L.; Li, C.-L.; Li, N.; Xiang, K.-X. Facile synthesis of CuO–NiO nanocomposites with high surface areas and their application for lithium-ion batteries. Micro Nano Lett. 2013, 8, 544–548. [Google Scholar] [CrossRef]
- Gu, X.; Chen, L.; Ju, Z.; Xu, H.; Yang, J.; Qian, Y. Controlled Growth of Porous α-Fe2O3 Branches on β-MnO2 Nanorods for Excellent Performance in Lithium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 4049–4056. [Google Scholar] [CrossRef]
- Ren, W.; Liu, D.; Sun, C.; Yao, X.; Tan, J.; Wang, C.; Zhao, K.; Wang, X.; Li, Q.; Mai, L. Nonhierarchical Heterostructured Fe2O3/Mn2O3 Porous Hollow Spheres for Enhanced Lithium Storage. Small 2018, 14, e1800659. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Molitor, F.; Guttinger, J.; Stampfer, C.; Droscher, S.; Jacobsen, A.; Ihn, T.; Ensslin, K. Electronic properties of graphene nanostructures. J. Phys-Condens. Matter 2011, 23, 212–215. [Google Scholar] [CrossRef]
- Wang, Z.; Mu, J.C.; Li, Y.; Chen, J.; Zhang, L.P.; Li, D.G.; Zhao, P.P. Preparation and lithium storage properties of NiO-SnO2/graphene nanosheet ternary composites. J. Alloys Compd. 2017, 695, 2909–2915. [Google Scholar] [CrossRef]
- Du, D.J.; Yue, W.B.; Fan, X.L.; Tang, K.; Yang, X.J. Ultrathin NiO/NiFe2O4 Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties. Electrochim. Acta 2016, 194, 17–25. [Google Scholar] [CrossRef]
- Ma, L.; Pei, X.-Y.; Mo, D.-C.; Lyu, S.-S.; Fu, Y.-X. Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries. Ceram. Int. 2018, 44, 22664–22670. [Google Scholar] [CrossRef]
- Abbas, S.M.; Hussain, S.T.; Ali, S.; Ahmad, N.; Ali, N.; Abbas, S.; Ali, Z. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries. J. Solid. State Chem. 2013, 202, 43–50. [Google Scholar] [CrossRef]
- Hummer, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. Acs Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Song, X.; Sun, S.; Zhang, W.; Yu, H.; Fan, W. Synthesis of Cu(OH)2 Nanowires at Aqueous-Organic Interfaces. J. Phys. Chem. B 2004, 108, 5200–5205. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Adv. Funct. Mater. 2012, 22, 2632–2641. [Google Scholar] [CrossRef]
- Yang, W.F.; Cheng, G.H.; Dong, C.Q.; Bai, Q.G.; Chen, X.T.; Peng, Z.Q.; Zhang, Z.H. NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 20022–20029. [Google Scholar] [CrossRef]
- Yang, J.R.; Zeng, D.Q.; Zheng, H.F.; Xie, Q.S.; Huang, J.; Xiao, L.; Peng, D.L. 3D graphene encapsulated ZnO-NiO-CuO double-shelled hollow microspheres with enhanced lithium storage properties. J. Alloys Compd. 2018, 765, 1158–1166. [Google Scholar] [CrossRef]
- Sun, L.; Deng, Q.; Li, Y.; Deng, L.; Wang, Y.; Ren, X.; Zhang, P. Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high performance lithium-ion batteries. Electrochim. Acta 2016, 222, 1650–1659. [Google Scholar] [CrossRef]
- Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [Google Scholar] [CrossRef]
- Guo, W.; Sun, W.; Wang, Y. Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage. ACS Nano 2015, 9, 11462–11471. [Google Scholar] [CrossRef]
- Yin, H.; Yu, X.-X.; Li, Q.-W.; Cao, M.-L.; Zhang, W.; Zhao, H.; Zhu, M.-Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97–102. [Google Scholar] [CrossRef]
- Fan, Z.; Liang, J.; Yu, W.; Ding, S.; Cheng, S.; Yang, G.; Wang, Y.; Xi, Y.; Xi, K.; Kumar, R.V. Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 2015, 16, 152–162. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Q.; Lu, Z.; Yang, C.; Qian, W.; Yu, F. Porous nanocomposites by cotton-derived carbon/NiO with high performance for lithium-ion storage. J. Alloys Compd. 2021, 874, 159788. [Google Scholar] [CrossRef]
- Deng, W.; Chen, X.; Hub, A.; Zhang, S. Graphitic carbon-wrapped NiO embedded three dimensional nitrogen doped aligned carbon nanotube arrays with long cycle life for lithium ion batteries. Rsc Adv. 2018, 8, 28440–28446. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Y.; Su, D.; Ding, C.; Wang, L.; Yan, D.; Li, J.; Jin, H. Synthesis of NiO Nano Octahedron Aggregates as High-Performance Anode Materials for Lithium Ion Batteries. Electrochim. Acta 2017, 231, 272–278. [Google Scholar] [CrossRef]
- Cui, X.; Song, B.; Cheng, S.; Xie, Y.; Shao, Y.; Sun, Y. Synthesis of carbon nanotube (CNT)-entangled CuO nanotube networks via CNT-catalytic growth and in situ thermal oxidation as additive-free anodes for lithium ion batteries. Nanotechnology 2018, 29, 035603. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fan, L.; Li, X.; Shan, H.; Chen, C.; Yan, B.; Xiong, D.; Li, D. Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries. Mater. Chem. Phys. 2018, 217, 547–552. [Google Scholar] [CrossRef]
- Yin, X.; Chen, H.; Zhi, C.; Sun, W.; Lv, L.P.; Wang, Y. Functionalized Graphene Quantum Dot Modification of Yolk-Shell NiO Microspheres for Superior Lithium Storage. Small 2018, 14, e1800589. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-X.; Zhao, D.-L.; Yao, R.-R.; Li, C.; Wang, X.-J.; Sun, F.-F. Hedgehog-like CuO/nitrogen-doped graphene nanocomposite for high-performance lithium-ion battery anodes. J. Alloys Compd. 2017, 714, 419–424. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, J.; Shan, W.; Xia, X.; Xing, L.; Xue, X. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes. J. Alloys Compd. 2014, 590, 424–427. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, Y.; Key, J.; Shen, P.K. Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. J. Power Sources 2018, 379, 362–370. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, J.; Kwon, H.; Song, H. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials. Adv. Mater. 2009, 21, 803–807. [Google Scholar] [CrossRef]
- Yuan, W.; Yan, Z.; Pan, B.; Qiu, Z.; Luo, J.; Tan, Z.; Tang, Y.; Li, Z. Hierarchical MCMB/CuO/Cu anode with super-hydrophilic substrate and blind-hole structures for lithium-ion batteries. J. Alloys Compd. 2017, 719, 353–364. [Google Scholar] [CrossRef]
- Ranjbar-Azad, M.; Behpour, M. Facile in situ co-precipitation synthesis of CuO–NiO/rGO nanocomposite for lithium-ion battery anodes. J. Mater. Sci. Mater. Electron. 2021, 32, 18043–18056. [Google Scholar] [CrossRef]
- Liang, J.; Jiang, J.; Xu, M.; Huo, X.; Ye, D.; Zhang, S.; Wu, X.; Wu, W. Improved lithium storage performance of urchin-like CuO microspheres by stereotaxically constructed graphene mediating synergistic effect. J. Mater. Sci. Mater. Electron. 2021, 32, 8557–8569. [Google Scholar] [CrossRef]
- Fu, J.; He, H.; Zeng, T.; Zhang, C. Tunable surface pseudocapacitance assisted fast and flexible lithium storage of graphene wrapped NiO nano-arrays on nitrogen-doped carbon foams. Electrochim. Acta 2022, 407, 139875. [Google Scholar] [CrossRef]
- Bajorowicz, B.; Wilamowska-Zawłocka, M.; Lisowski, W.; Żak, A.; Klimczuk, T. N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance. Appl. Surf. Sci. 2024, 655, 159702. [Google Scholar] [CrossRef]
- Ma, L.; Pei, X.Y.; Mo, D.C.; Heng, Y.; Lyu, S.S.; Fu, Y.X. Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries. J. Mater. Sci.-Mater. 2019, 30, 5874–5880. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Chen, Y.; Wang, F.; Zhou, G. Fabrication of NiO-CuO/RGO Composite for Lithium Storage Property. Processes 2024, 12, 1422. https://doi.org/10.3390/pr12071422
Fu Y, Chen Y, Wang F, Zhou G. Fabrication of NiO-CuO/RGO Composite for Lithium Storage Property. Processes. 2024; 12(7):1422. https://doi.org/10.3390/pr12071422
Chicago/Turabian StyleFu, Yuanxiang, Yuxin Chen, Fan Wang, and Guoyong Zhou. 2024. "Fabrication of NiO-CuO/RGO Composite for Lithium Storage Property" Processes 12, no. 7: 1422. https://doi.org/10.3390/pr12071422
APA StyleFu, Y., Chen, Y., Wang, F., & Zhou, G. (2024). Fabrication of NiO-CuO/RGO Composite for Lithium Storage Property. Processes, 12(7), 1422. https://doi.org/10.3390/pr12071422