Fluorine-Free and Transparent Superhydrophobic Coating with Enhanced Anti-Icing and Anti-Frosting Performance by Using D26 and KH560 as Coupling Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SiO2@E51@KH560@D26 Superhydrophobic Coatings
2.3. Materials Characterization
2.4. Mechanical Robustness, Chemical Stability, UV Robustness, and Self-Cleaning Performance Test
2.5. Anti-Icing and Anti-Frosting Performance Test
2.5.1. Delay Icing Test
2.5.2. Adhesion Strength Measurement
2.5.3. Ice and Thaw Cycle Test
2.5.4. Anti-Frost Test
3. Results and Discussion
3.1. Morphological and Structural Characterizations
3.2. Reaction Mechanism Analysis
3.3. Durability
3.4. Self-Cleaning Capability
3.5. Anti-Icing and Anti-Frosting Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Numerical study of a droplet impact on cylindrical objects: Towards the anti-icing property of power transmission lines. Appl. Surf. Sci. 2020, 516, 146155. [Google Scholar] [CrossRef]
- Stoyanov, D.; Nixon, J.; Sarlak, H. Analysis of derating and anti-icing strategies for wind turbines in cold climates. Appl. Energy 2021, 288, 116610. [Google Scholar] [CrossRef]
- Volpe, A.; Gaudiuso, C.; Ancona, A. Laser Fabrication of Anti-Icing Surfaces: A Review. Materials 2020, 13, 5692. [Google Scholar] [CrossRef] [PubMed]
- Mirzanamadi, R.; Hagentoft, C.-E.; Johansson, P.; Johnsson, J. Anti-icing of road surfaces using Hydronic Heating Pavement with low temperature. Cold. Reg. Sci. Technol. 2018, 145, 106–118. [Google Scholar] [CrossRef]
- Zuo, Z.; Liao, R.; Zhao, X.; Song, X.; Qiao, Z.; Guo, C.; Zhuang, A.; Yuan, Y. Anti-frosting performance of superhydrophobic surface with ZnO nanorods. Appl. Therm. Eng. 2017, 110, 39–48. [Google Scholar] [CrossRef]
- Heu, C.S.; Jang, H.; Jeon, J.; Lee, K.-S.; Kim, D.R. Recent progress on developing anti-frosting and anti-fouling functional surfaces for air source heat pumps. Energy Build. 2020, 223, 110139. [Google Scholar] [CrossRef]
- Chen, P.; Tian, S.; Guo, H.; Wang, J.; Liu, X.; Xu, S.; Li, R.; Li, Q.; Wen, C.; Yang, J. An extreme environment-tolerant anti-icing coating. Chem. Eng. Sci. 2022, 262, 118010. [Google Scholar] [CrossRef]
- Shome, A.; Das, A.; Borbora, A.; Dhar, M.; Manna, U. Role of chemistry in bio-inspired liquid wettability. Chem. Soc. Rev. 2022, 51, 5452–5497. [Google Scholar] [CrossRef]
- Wang, L.; Gong, Q.; Zhan, S.; Jiang, L.; Zheng, Y. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 2016, 28, 7729–7735. [Google Scholar] [CrossRef]
- Wu, S.; Du, Y.; Alsaid, Y.; Wu, D.; Hua, M.; Yan, Y.; Yao, B.; Ma, Y.; Zhu, X.; He, X. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. USA 2020, 117, 11240–11246. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Yu, J.; Wang, M. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 2011, 6, 510–530. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Zhang, D.; Li, L.; Wang, T.; Duan, S. Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method. Colloids Surf. A 2020, 587, 124331. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching. Appl. Surf. Sci. 2018, 439, 598–604. [Google Scholar] [CrossRef]
- Zhuang, A.; Liao, R.; Lu, Y.; Dixon, S.C.; Jiamprasertboon, A.; Chen, F.; Sathasivam, S.; Parkin, I.P.; Carmalt, C.J. Transforming a simple commercial glue into highly robust superhydrophobic surfaces via aerosol-assisted chemical vapor deposition. ACS Appl. Mater. Interfaces 2017, 9, 42327–42335. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, D.; Kang, Z. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl. Mater. Interfaces 2015, 7, 1859–1867. [Google Scholar] [CrossRef]
- Vidal, K.; Gómez, E.; Goitandia, A.M.; Angulo-Ibáñez, A.; Aranzabe, E. The synthesis of a superhydrophobic and thermal stable silica coating via sol-gel process. Coatings 2019, 9, 627. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Gong, X. Large-scale spraying fabrication of robust fluorine-free superhydrophobic coatings based on dual-sized silica particles for effective antipollution and strong buoyancy. Langmuir 2021, 37, 6042–6051. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, J.; Xu, W.; Zhang, Y.; Duan, J.; Hou, B. Robust, scalable and fluorine-free superhydrophobic anti-corrosion coating with shielding functions in marine submerged and atmospheric zones. Mater. Des. 2022, 223, 111246. [Google Scholar] [CrossRef]
- Li, X.; Yan, J.; Yu, T.; Zhang, B. Versatile nonfluorinated superhydrophobic coating with self-cleaning, anti-fouling, anti-corrosion and mechanical stability. Colloids Surf. A 2022, 642, 128701. [Google Scholar] [CrossRef]
- Key, B.D.; Howell, R.D.; Criddle, C.S. Fluorinated organics in the biosphere. Environ. Sci. Technol. 1997, 31, 2445–2454. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.; Li, X.; Xiao, T.; Jiang, L.; Nie, S.; Song, J.; Chen, X. Eco-friendly fabrication of transparent superhydrophobic coating with excellent mechanical robustness, chemical stability, and long-term outdoor durability. Langmuir 2022, 38, 12881–12893. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Cheng, Y.; Huang, J.; Xiong, J.; Ge, M.; Mao, J.; Liu, Z.; Dong, X.; Chen, Z.; Lai, Y. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chem. Eng. J. 2020, 399, 125746. [Google Scholar] [CrossRef]
- Dong, W.; Zhou, S.; Qian, F.; Li, Q.; Tang, G.; Xiang, T.; Long, H.; Chun, T.; Lu, J.; Han, Y. Low-temperature silane coupling agent modified biomimetic micro/nanoscale roughness hierarchical structure superhydrophobic polyethylene terephthalate filter media. Polym. Adv. Technol 2022, 33, 1655–1664. [Google Scholar] [CrossRef]
- Bake, A.; Merah, N.; Matin, A.; Gondal, M.; Qahtan, T.; Abu-Dheir, N. Preparation of transparent and robust superhydrophobic surfaces for self-cleaning applications. Prog. Org. Coat. 2018, 122, 170–179. [Google Scholar] [CrossRef]
- Tan, X.; Wang, Y.; Huang, Z.; Sabin, S.; Xiao, T.; Jiang, L.; Chen, X. Facile fabrication of a mechanical, chemical, thermal, and long-term outdoor durable fluorine-free superhydrophobic coating. Adv. Mater. Interfaces 2021, 8, 2002209. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, J.; Peng, T.; Jiang, C.; Liu, S.; Li, Y.; Guo, T.; Xie, L. Superhydrophobic melamine–formaldehyde sponge functionalized by coupling agent–isocyanate siloxane as efficient absorbents for oil and organic solvents. Adv. Mater. Interfaces. 2019, 6, 1900025. [Google Scholar] [CrossRef]
- Das, A.; Shome, A.; Manna, U. Porous and reactive polymeric interfaces: An emerging avenue for achieving durable and functional bio-inspired wettability. J. Mater. Chem. A 2021, 9, 824–856. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, X.; Wang, W.; Gong, X. Durable self-cleaning surfaces with superhydrophobic and highly oleophobic properties. Langmuir 2019, 35, 8404–8412. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Yu, L.; Duan, Q.; Ji, Z.; Chen, L. Superhydrophobic modification on starch film using PDMS and ball-milled MMT coating. ACS Sustain. Chem. Eng. 2020, 8, 10423–10430. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Zhang, H.-X.; Liu, Z.-J.; Jiang, X.-Y.; Agathopoulos, S.; Deng, Z.; Gao, H.-Y.; Zhang, L.; Lu, H.-P.; Deng, L.-J. Nano-silica anti-icing coatings for protecting wind-power turbine fan blades. J. Colloid. Interface Sci. 2023, 630, 1–10. [Google Scholar] [CrossRef]
- Xin, J.; Li, M.; Li, R.; Wolcott, M.P.; Zhang, J. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt. ACS Sustain. Chem. Eng. 2016, 4, 2754–2761. [Google Scholar] [CrossRef]
- Okumoto, S.; Fujita, N.; Yamabe, S. Theoretical study of hydrolysis and condensation of silicon alkoxides. J. Phys. Chem. A 1998, 102, 3991–3998. [Google Scholar] [CrossRef]
- Ashcroft, W. Curing agents for epoxy resins. In Chemistry and Technology of Epoxy Resins; Springer: Dordrecht, The Netherlands, 1993; pp. 37–71. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, R.; Jiang, J.; Wang, Z. Environmentally-friendly superhydrophobic surface based on Al2O3@ KH560@ SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water. Appl. Surf. Sci. 2019, 484, 307–316. [Google Scholar] [CrossRef]
- Tan, B.; Rankin, S.E. Study of the effects of progressive changes in alkoxysilane structure on sol−gel reactivity. J. Phys. Chem. B 2006, 110, 22353–22364. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Zhao, B.; Li, L.; Zhang, J. Durable superhydrophobic glass wool@ polydopamine@ PDMS for highly efficient oil/water separation. J. Colloid. Interface Sci. 2019, 544, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lei, E.; Zhang, R.; Liu, Z. The effect of SiO2 on TiO2-SiO2 composite film for self-cleaning application. Surf. Interfaces 2019, 16, 194–198. [Google Scholar] [CrossRef]
- Liu, T.; Sun, W.; Sun, X.; Ai, H. Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf. A 2012, 414, 366–374. [Google Scholar] [CrossRef]
- Wang, F.; Liang, C.; Zhang, X. Research of anti-frosting technology in refrigeration and air conditioning fields: A review. Renew. Sustain. Energy Rev. 2018, 81, 707–722. [Google Scholar] [CrossRef]
- Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C.M.; Poulikakos, D. Are superhydrophobic surfaces best for icephobicity? Langmuir 2011, 27, 3059–3066. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Chen, Z.; Xu, B. Dropwise condensation heat transfer on nanostructured superhydrophobic surfaces with different inclinations and surface subcoolings. Int. J. Heat. Mass. Tran. 2021, 181, 121898. [Google Scholar] [CrossRef]
- Wen, R.; Lan, Z.; Peng, B.; Xu, W.; Yang, R.; Ma, X. Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: Coordination of surface properties and condensing conditions. ACS Appl. Mater. Interfaces 2017, 9, 13770–13777. [Google Scholar] [CrossRef]
- Tavakoli, F.; Kavehpour, H.P. Cold-induced spreading of water drops on hydrophobic surfaces. Langmuir 2015, 31, 2120–2126. [Google Scholar] [CrossRef]
- Dillmann, A.; Meier, G. A refined droplet approach to the problem of homogeneous nucleation from the vapor phase. J. Chem. Phys. 1991, 94, 3872–3884. [Google Scholar] [CrossRef]
- Wang, F.; Liang, C.; Yang, M.; Zhang, X. Effects of surface characteristics on liquid behaviors on fin surfaces during frosting and defrosting processes. Exp. Therm. Fluid. Sci. 2015, 61, 113–120. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, L.; Xing, C.; Tan, Y. Anti-icing properties and application of superhydrophobic coatings on asphalt pavement. Constr. Build. Mater. 2024, 419, 135452. [Google Scholar] [CrossRef]
- Peng, C.; Yang, D.; You, Z.; Ruan, D.; Guan, P.; Ye, Z.; Ning, Y.; Zhao, N.; Yang, F. A photothermal and superhydrophobic emulsified asphalt coating modified by CNTs and PTFE for anti-icing and de-icing applications. Constr. Build. Mater. 2024, 416, 135148. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Z.; Niu, Y.; Luo, F.; Chen, Q. CNTs-induced superhydrophobic and photothermal coating with long-term durability and self-replenishing property for anti-icing/de-icing. Compos. Sci. Technol. 2024, 245, 110347. [Google Scholar] [CrossRef]
- Jiang, B.; Lei, Y.; Sun, K.; Chen, Q.; Zhang, F.; An, Y.; Zhang, Y.; Lin, Y.; Yuan, Y.; Liu, T. Superhydrophobic F-SiO2/tea polyphenol coating with high efficiency photothermal anti-icing and de-icing properties. Colloids Surf. A 2024, 683, 132846. [Google Scholar] [CrossRef]
- Wei, D.; Wang, J.; Li, S.; Wang, D.; Liu, Y. A non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion. Chem. Eng. J. 2023, 475, 146113. [Google Scholar] [CrossRef]
- Nomeir, B.; Lakhouil, S.; Boukheir, S.; Ali, M.A.; Naamane, S. Durable and transparent superhydrophobic coating with temperature-controlled multi-scale roughness for self-cleaning and anti-icing applications. Prog. Org. Coat. 2024, 189, 108338. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, B.; Zhang, Y.; Guo, H.; Chen, Z.; Wei, R.; Hu, J. Superhydrophobic coating of a modified calcium sulfate whiskers@ SiO2-F/TPU for anti-icing applications. Adv. Powder Technol. 2024, 35, 104362. [Google Scholar] [CrossRef]
Superhydrophobic Surface | Light Transmittance | WCA | WSA | Anti-Icing Test | Anti-Icing Function |
---|---|---|---|---|---|
SiO2/graphene composite [46] | Opaque | 153.0° | \ | Reduces ice-melting time by 387.5% | Photothermal deicing |
Modified calcium sulfate whiskers@SiO2-F/TPU [52] | \ | 159 ± 2° | 7 ± 1° | Prolongs the freezing time by 50 s | Delay freezing |
EP@PDMS@graphene@SiO2 [50] | \ | 164.1° to 157.0° | 2 to 4° | Electrothermal deicing/defrosting | Electrothermal |
CNTs/PTFE-modified emulsified asphalt [47] | Opaque | 151.01° | \ | Freezing is inhibited under near-infrared light irradiation | Photothermal deicing |
PDMS@SiO2 and CNTs in silicon resin [48] | Opaque | 154.3° | \ | Delayed freezing time of 440 s at −20 °C | Photothermal deicing |
SiO2@TCMS [51] | 85% | 160.8° | 1° | Prolongs the freezing time by 40 min | Delay freezing |
F-SiO2/tea polyphenol/Fe NPs [49] | Opaque | 159° | <2.5° | The freezing time of surface droplets is extended by more than three times under 1 sun irradiation | Light absorption and photothermal conversion |
SiO2@E51@KH-560@D26 (this work) | 86.3% | 156° | 1° | The delayed freezing time is 5.7 times that of bare glass | Delays freezing, inhibits frosting, and accelerates deicing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, T.; Wang, Y.; Lang, X.; Chen, S.; Jiang, L.; Tao, F.; Xiao, Y.; Li, X.; Tan, X. Fluorine-Free and Transparent Superhydrophobic Coating with Enhanced Anti-Icing and Anti-Frosting Performance by Using D26 and KH560 as Coupling Agents. Processes 2024, 12, 654. https://doi.org/10.3390/pr12040654
Xiao T, Wang Y, Lang X, Chen S, Jiang L, Tao F, Xiao Y, Li X, Tan X. Fluorine-Free and Transparent Superhydrophobic Coating with Enhanced Anti-Icing and Anti-Frosting Performance by Using D26 and KH560 as Coupling Agents. Processes. 2024; 12(4):654. https://doi.org/10.3390/pr12040654
Chicago/Turabian StyleXiao, Ting, Yudian Wang, Xia Lang, Siyu Chen, Lihua Jiang, Fujun Tao, Yequan Xiao, Xinyi Li, and Xinyu Tan. 2024. "Fluorine-Free and Transparent Superhydrophobic Coating with Enhanced Anti-Icing and Anti-Frosting Performance by Using D26 and KH560 as Coupling Agents" Processes 12, no. 4: 654. https://doi.org/10.3390/pr12040654
APA StyleXiao, T., Wang, Y., Lang, X., Chen, S., Jiang, L., Tao, F., Xiao, Y., Li, X., & Tan, X. (2024). Fluorine-Free and Transparent Superhydrophobic Coating with Enhanced Anti-Icing and Anti-Frosting Performance by Using D26 and KH560 as Coupling Agents. Processes, 12(4), 654. https://doi.org/10.3390/pr12040654