Determination of 24 Trace Aromatic Substances in Rosemary Hydrosol by Dispersed Liquid–Liquid Microextraction–Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Method
2.3.1. Preparation of Standard Solution and Establishing of Standard Curve
2.3.2. Sample Collection, Preparation and Detection
3. Results and Discussion
3.1. Gas Chromatograms of Target Analytes in Samples
3.2. Selection of Extractant
3.3. Selection of Dispersant
3.4. Optimization of Extractant Volume
3.5. Optimization of Dispersant Volume
3.6. Optimization of DLLME Parameters
3.7. Retention Time, Method Detection Limit, Linear Regression Equation and Correlation Coefficient
3.8. Recovery, Precision, Enrichment Factor and Correction Factor
3.9. Determination of Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, P.; Liu, H. Research on the biological activity of rosemary extracts and its application in food. E3S Web Conf. EDP Sci. 2021, 251, 02034. [Google Scholar] [CrossRef]
- Touafek, O.; Nacer, A.; Kabouche, A.; Kabouche, Z.; Bruneau, C. Chemical composition of the essential oil of Rosmarinus officinalis cultivated in the Algerian Sahara. Chem. Nat. Compd. 2004, 40, 28–29. [Google Scholar] [CrossRef]
- Holmes, P. Rosemary oil The wisdom of the heart. Int. J. Aromather. 1998, 9, 62–66. [Google Scholar] [CrossRef]
- Damianova, S.; Tasheva, S.; Stoyanova, A.; Damianov, D. Investigation of extracts from rosemary (Rosmarinus officinalis L.) for application in cosmetics. J. Essent. Oil Bear. Plants 2010, 13, 1–11. [Google Scholar] [CrossRef]
- Jeon, D.H.; Moon, J.Y.; Hyun, H.B.; Cho, S.K. Composition analysis and antioxidant activities of the essential oil and the hydrosol extracted from Rosmarinus officinalis L. and Lavandula angustifolia Mill. produced in Jeju. J. Appl. Biol. Chem. 2013, 56, 141–146. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant activity of some Morrocan hydrosols. J. Med. Plants Res. 2011, 5, 6688–6696. [Google Scholar]
- Dheyab, A.S.; Kanaan, M.Q.; Hussein, N.A.; AlOmar, M.K.; Sabran, S.F.; Abu Bakar, M.F. Antimycobacterial Activity of Rosmarinus officinalis (Rosemary) Extracted by Deep Eutectic Solvents. Separations 2022, 9, 271. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Tornuk, F.; Cankurt, H.; Ozturk, I.; Sagdic, O.; Bayram, O.; Yetim, H. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157: H7 and Salmonella Typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol. 2011, 148, 30–35. [Google Scholar] [CrossRef]
- Sadeh, D.; Nitzan, N.; Chaimovitsh, D.; Shachter, A.; Ghanim, M.; Dudai, N. Interactive effects of genotype, seasonality and extraction method on chemical compositions and yield of essential oil from rosemary (Rosmarinus officinalis L.). Ind. Crop. Prod. 2019, 138, 111419. [Google Scholar] [CrossRef]
- Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Singh, M.; Guleria, N. Influence of harvesting stage and inorganic and organic fertilizers on yield and oil composition of rosemary (Rosmarinus officinalis L.) in a semi-arid tropical climate. Ind. Crop. Prod. 2013, 42, 37–40. [Google Scholar] [CrossRef]
- Issabeagloo, E.; Kermanizadeh, P.; Taghizadieh, M.; Forughi, R. Antimicrobial effects of rosemary (Rosmarinus officinalis L.) essential oils against Staphylococcus spp. J. Microbiol. Res. 2012, 6, 5039–5042. [Google Scholar]
- Boussalah, N.M. Chemical composition and biological activities of essential oil and hydrosol extract from aerial parts of Cynoglossum cheirifolium L. from Algeria. J. Essent. Oil Bear. Plants 2020, 23, 97–104. [Google Scholar] [CrossRef]
- Tomi, K.; Kitao, M.; Konishi, N.; Murakami, H.; Matsumura, Y.; Hayashi, T. Enantioselective GC–MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols. Biosci. Biotechnol. Biochem. 2016, 80, 840–847. [Google Scholar] [CrossRef]
- Politi, M.; Ferrante, C.; Menghini, L.; Angelini, P.; Flores, G.A.; Muscatello, B.; De Leo, M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical analysis and bioactivity evaluation. Plants 2022, 11, 349. [Google Scholar] [CrossRef]
- Ding, M.; Liu, W.; Peng, J.; Liu, X.; Tang, Y. Simultaneous determination of seven preservatives in food by dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry. Food Chem. 2018, 269, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, D.; Zhou, Z.; Wang, P. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME). Chirality 2013, 25, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Assadi, Y.; Hosseini, M.-R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, S.G.; Apyari, V.V.; Tolmacheva, V.V.; Gorbunova, M.V. Dispersive liquid–liquid microextraction of organic compounds: An overview of reviews. J. Anal. Chem. 2020, 75, 1237–1251. [Google Scholar] [CrossRef]
- Rezk, M.R.; Abd El-Aleem, A.E.; Khalile, S.M.; El-Naggar, O.K. Determination of residues of diazinon and chlorpyrifos in lavender and rosemary leaves by gas chromatography. J. AOAC Int. 2018, 101, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Mahindrakar, A.N.; Shinde, L.P. Gas chromatography–mass spectrometry determination of pesticide residue in fruits. Int. J. Chemtech. Res. 2014, 6, 124–130. [Google Scholar]
- Newair, E.F.; Garcia, F. Identification of adducts between oxidized rosmarinic acid and glutathione compounds by electrochemistry, liquid chromatography and mass spectrometry. Anal. Methods 2022, 14, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J. Chromatogr. A 2010, 1217, 2512–2520. [Google Scholar] [CrossRef]
- Nanashima, N.; Kitajima, M.; Takamagi, S.; Fujioka, M.; Tomisawa, T. Comparison of chemical composition between Kuromoji (Lindera umbellata) essential oil and hydrosol and determination of the deodorizing effect. Molecules 2020, 25, 4195. [Google Scholar] [CrossRef]
- Allal, A.; Bellifa, S.; Benmansour, N.; Selles, C.; Semaoui, M.; Hassaine, H.; Muselli, A. Essential oil and hydrosol extract chemical profile, antioxidant and antimicrobial potential of Daphne gnidium L. from Algeria. J. Essent. Oil Bear. Plants 2019, 22, 1277–1288. [Google Scholar] [CrossRef]
- El Amine Dib, M.; Djabou, N.; Allali, H.; Paolini, J.; Tabti, B.; Costa, J.; Muselli, A. Chemical composition of essential oils and hydrosol extracts of Daucus muricatus and assessment of its antioxidant activity. J. Herbs Spices Med. Plants 2015, 21, 23–37. [Google Scholar] [CrossRef]
Instrumental Parameters | Value |
---|---|
Injection port | |
Injection volume (μL) | 1.0 |
Injection port temperature (°C) | 250 |
Split ratio | 20:1 |
Chromatographic column | |
Column flow (mL/min) | 1.00 |
Programmed temperature rise procedure | 50 °C for 3 min, 4 °C/min to 160 °C, 0 min, 20 °C/min to 240 °C, 5.5 min |
Detector | |
Detector temperature (°C) | 300 |
Hydrogen flow (mL/min) | 32.0 |
Air flow (mL/min) | 200.0 |
Tail gas flow (mL/min) | 24.0 |
No. | Target Analytes | Retention Time (min) | No. | Target Analytes | Retention Time (min) |
---|---|---|---|---|---|
1 | α-Pinene | 6.589 | 13 | cis-3-Hexen-1-ol | 17.298 |
2 | (±)-Camphene | 7.581 | 14 | D(+)-Camphor | 21.248 |
3 | β-Pinene | 8.674 | 15 | Linalool | 22.199 |
4 | Myrcene | 10.261 | 16 | Linalyl Acetate | 22.401 |
5 | α-Terpinene | 10.739 | 17 | Isobornyl acetate | 23.294 |
6 | (R)-(+)-Limonene | 11.318 | 18 | (-)-trans-Caryophyllene | 23.575 |
7 | Eucalyptol | 11.693 | 19 | 4-Carvomenthenol | 23.817 |
8 | trans-2-Hexen-1-al | 11.945 | 20 | Isoborneol | 25.690 |
9 | γ-Terpinene | 12.788 | 21 | α-Terpineol | 26.479 |
10 | 4-lsopropyltoluene | 13.559 | 22 | (-)-Verbenone | 26.730 |
11 | Terpinolene | 13.972 | 23 | Neryl acetate | 27.174 |
12 | Methyl heptenone | 15.720 | 24 | Geraniol | 30.458 |
Serial No. | Target Analytes | Retention Time (min) | Method Detection Limit (mg/L) | Linear Regression Equation | Correlation Coefficient r |
---|---|---|---|---|---|
1 | α-Pinene | 6.581 | 0.02 | Y = 1166.1X − 6 59.2 | 0.9991 |
2 | (±)-Camphene | 7.573 | 0.02 | Y = 1174.7X − 5 48.5 | 0.9991 |
3 | β-Pinene | 8.665 | 0.02 | Y = 1237.2X − 723.1 | 0.9990 |
4 | Myrcene | 10.245 | 0.02 | Y = 1143.4X − 695.7 | 0.9990 |
5 | α-Terpinene | 10.728 | 0.02 | Y = 1276.8X − 793.4 | 0.9989 |
6 | (R)-(+)-Limonene | 11.307 | 0.02 | Y = 1318.4X − 964.5 | 0.9989 |
7 | Eucalyptol | 11.681 | 0.02 | Y = 1247.9X − 905.1 | 0.9990 |
8 | trans-2-Hexen-1-al | 11.934 | 0.02 | Y = 758.4X − 598.9 | 0.9989 |
9 | γ-Terpinene | 12.777 | 0.02 | Y = 1192.9X − 796.6 | 0.9990 |
10 | 4-lsopropyltoluene | 13.548 | 0.02 | Y = 1302.2X − 982.0 | 0.9989 |
11 | Terpinolene | 13.961 | 0.02 | Y = 1090.2X − 680.4 | 0.9990 |
12 | Methyl heptenone | 15.710 | 0.02 | Y = 975.7X − 868.1 | 0.9988 |
13 | cis-3-Hexen-1-ol | 17.289 | 0.02 | Y = 925.4X − 804.8 | 0.9989 |
14 | D(+)-Camphor | 21.238 | 0.02 | Y = 1398.6X − 1343.3 | 0.9989 |
15 | Linalool | 22.191 | 0.02 | Y = 1041.4X − 1030.9 | 0.9987 |
16 | Linalyl Acetate | 22.389 | 0.02 | Y = 1194.6X − 1132.6 | 0.9988 |
17 | Isobornyl acetate | 23.282 | 0.02 | Y = 1416.6X − 1406.3 | 0.9988 |
18 | (-)-trans-Caryophyllene | 23.561 | 0.02 | Y = 1850.6X − 1710.0 | 0.9987 |
19 | 4-Carvomenthenol | 23.807 | 0.02 | Y = 1542.2X − 1693.4 | 0.9986 |
20 | Isoborneol | 25.678 | 0.02 | Y = 1207.1X − 1193.3 | 0.9989 |
21 | α-Terpineol | 26.471 | 0.02 | Y = 897.5X − 718.5 | 0.9988 |
22 | (-)-Verbenone | 26.718 | 0.02 | Y = 1321.7X − 1808.1 | 0.9985 |
23 | Neryl acetate | 27.166 | 0.02 | Y = 1146.7X − 1024.0 | 0.9987 |
24 | Geraniol | 30.450 | 0.02 | Y = 1300.5X − 1759.0 | 0.9983 |
References | Pretreatment Methods | Pretreatment Time | Detector | Organic Reagent Dosage | LOD (mg/L) | Quantitative Method |
---|---|---|---|---|---|---|
[25] | Direct injection | 0 h | GC and GC-MS | 0 mL | / | Area normalization method |
[27] | Direct injection | 0 h | GC-MS | 0 mL | / | Area normalization method |
[26] | Direct injection | 0 h | GC-MS | 0 mL | / | Area normalization method |
[10] | Solvent extraction | 24 h | GC-MS | 10 mL | / | Area normalization method |
This method | DLLME | 10 min | GC | 2.25 mL | 0.02 | External standard method |
Serial No. | Scalar | 1.5 μg | 15 μg | 150 μg | |||
---|---|---|---|---|---|---|---|
Target Substance | Recovery % | RSD % | Recovery % | RSD % | Recovery % | RSD % | |
1 | α-Pinene | 107.6 | 2.0 | 103.6 | 1.0 | 82.5 | 5.0 |
2 | (±)-Camphene | 77.3 | 6.9 | 94.6 | 1.0 | 81.3 | 3.8 |
3 | β-Pinene | 76.4 | 4.9 | 99.8 | 1.3 | 82.2 | 4.6 |
4 | Myrcene | 81.6 | 5.9 | 109.4 | 0.7 | 82.9 | 4.1 |
5 | α-Terpinene | 86.4 | 5.5 | 112.4 | 0.8 | 84.3 | 3.7 |
6 | (R)-(+)-Limonene | 100.0 | 6.4 | 114.1 | 0.7 | 85.4 | 3.6 |
7 | Eucalyptol | 105.1 | 1.6 | 137.0 | 0.7 | 105.4 | 1.8 |
8 | trans-2-Hexen-1-al | 103.3 | 3.4 | 129.0 | 0.7 | 95.7 | 2.0 |
9 | γ-Terpinene | 93.3 | 4.5 | 116.8 | 0.7 | 87.0 | 3.0 |
10 | 4-lsopropyltoluene | 89.3 | 2.0 | 120.4 | 0.7 | 86.8 | 2.7 |
11 | Terpinolene | 102.7 | 3.4 | 119.2 | 0.6 | 88.2 | 2.6 |
12 | Methyl heptenone | 105.6 | 1.6 | 136.7 | 0.6 | 103.2 | 2.0 |
13 | cis-3-Hexen-1-ol | 83.6 | 2.0 | 112.4 | 0.9 | 81.3 | 2.4 |
14 | D(+)-Camphor | 106.2 | 1.6 | 137.5 | 0.4 | 104.8 | 2.0 |
15 | Linalool | 113.8 | 0.9 | 138.8 | 0.5 | 105.0 | 2.1 |
16 | Linalyl Acetate | 108.0 | 2.2 | 131.3 | 0.7 | 101.1 | 0.6 |
17 | Isobornyl acetate | 108.2 | 0.7 | 136.6 | 0.4 | 101.2 | 0.7 |
18 | (-)-trans-Caryophyllene | 100.9 | 5.3 | 125.0 | 0.4 | 102.0 | 1.3 |
19 | 4-Carvomenthenol | 109.3 | 1.6 | 137.3 | 0.5 | 104.5 | 2.2 |
20 | Isoborneol | 104.9 | 1.0 | 136.2 | 0.7 | 104.2 | 2.1 |
21 | α-Terpineol | 113.4 | 0.6 | 136.3 | 0.8 | 104.4 | 2.4 |
22 | (-)-Verbenone | 101.1 | 1.4 | 132.4 | 0.7 | 99.3 | 2.3 |
23 | Neryl acetate | 114.2 | 1.5 | 132.9 | 0.5 | 104.3 | 1.2 |
24 | Geraniol | 102.7 | 1.9 | 135.2 | 0.4 | 104.1 | 2.2 |
No. | Target Substance | Sample 1 | Sample 2 | Sample 3 | Sample 5 | Sample 7 | Sample 8 | Sample 9 | Sample 10 |
---|---|---|---|---|---|---|---|---|---|
1 | α-Pinene | 36.8 ± 0.70 | 0.6 ± 0.06 | 0.6 ± 0.06 | 0.6 ± 0.10 | 0.7 ± 0.06 | 0.7 ± 0.06 | 0.7 ± 0.06 | 0.6 ± 0.06 |
2 | (±)-Camphene | 9.7 ± 0.21 | ND 1 | ND | 0.6 ± 0.06 | 0.4 ± 0.06 | 0.4 ± 0.06 | ND | ND |
3 | β-Pinene | 2.1 ± 0.06 | ND | ND | ND | ND | ND | ND | ND |
4 | Myrcene | 3 ± 0.10 | ND | ND | ND | 0.6 ± 0.06 | 0.7 ± 0.06 | 0.7 ± 0.06 | ND |
5 | α-Terpinene | 0.9 ± 0.06 | ND | 0.4 ± 0.06 | ND | 0.4 ± 0.06 | ND | 0.4 ± 0.12 | ND |
6 | (R)-(+)-Limonene | 4.6 ± 0.21 | ND | ND | ND | 0.5 ± 0.06 | 0.5 ± 0.10 | 0.5 ± 0.06 | 0.5 ± 0.06 |
7 | Eucalyptol | 154.6 ± 2.27 | 103.9 ± 1.65 | 36.3 ± 0.45 | 2.9 ± 1.2 | 217.6 ± 3.89 | 224.3 ± 3.27 | 237.7 ± 2.45 | 226.4 ± 6.95 |
8 | trans-2-Hexen-1-al | ND | ND | ND | ND | 1.2 ± 0.10 | 1.2 ± 0.10 | 1.3 ± 0.06 | 1.1 ± 0.06 |
9 | γ-Terpinene | 1 ± 0.06 | ND | ND | ND | ND | ND | ND | ND |
10 | 4-lsopropyltoluene | 3.9 ± 0.10 | ND | ND | ND | 0.4 ± 0.12 | ND | ND | ND |
11 | Terpinolene | 0.8 ± 0.06 | ND | ND | ND | ND | ND | ND | ND |
12 | Methyl heptenone | 0.4 ± 0.06 | 0.6 ± 0.06 | 0.6 ± 0.06 | ND | 0.5 ± 0.12 | 0.9 ± 0.10 | 0.9 ± 0.06 | 0.8 ± 0.10 |
13 | cis-3-Hexen-1-ol | 0.4 ± 0.06 | 0.6 ± 0.06 | 0.6 ± 0.06 | ND | 1.1 ± 0.12 | 1.8 ± 0.15 | 1.5 ± 0.15 | 1.7 ± 0.21 |
14 | D(+)-Camphor | 32.3 ± 0.40 | 16 ± 0.46 | 11 ± 0.31 | 1 ± 0.12 | 354.1 ± 5.46 | 57.3 ± 0.71 | 77.3 ± 1.05 | 48.5 ± 0.85 |
15 | Linalool | 3.6 ± 0.06 | 18 ± 0.31 | 7.6 ± 0.21 | 0.7 ± 0.12 | 10.4 ± 0.30 | 19.2 ± 1.05 | 14.7 ± 0.72 | 21.7 ± 1.56 |
16 | Linalyl Acetate | ND | ND | ND | ND | ND | ND | ND | ND |
17 | Isobornyl acetate | 0.6 ± 0.06 | 0.6 ± 0.06 | 0.5 ± 0.06 | ND | 1 ± 0.15 | 1.2 ± 0.15 | 1.3 ± 0.12 | 1.2 ± 0.06 |
18 | (-)-trans-Caryophyllene | 3.4 ± 0.10 | ND | ND | ND | 0.7 ± 0.12 | ND | 1.5 ± 0.06 | ND |
19 | 4-Carvomenthenol | 2.2 ± 0.10 | 4.6 ± 0.15 | 3.4 ± 0.10 | 0.6 ± 0.06 | 14.6 ± 0.53 | 9.8 ± 0.50 | 10.9 ± 0.42 | 9.6 ± 0.32 |
20 | Isoborneol | 1.6 ± 0.06 | ND | ND | ND | ND | ND | ND | ND |
21 | α-Terpineol | 7.5 ± 0.06 | 15.2 ± 0.26 | 17 ± 0.36 | 1.3 ± 0.06 | 152.2 ± 2.95 | 47.9 ± 1.57 | 52.3 ± 0.8 | 45.6 ± 1.12 |
22 | (-)-Verbenone | ND | 62.7 ± 1.61 | 130.4 ± 3.67 | 12.4 ± 0.29 | ND | 576.5 ± 4.31 | 545.2 ± 6.45 | 569.2 ± 14.50 |
23 | Neryl acetate | 0.4 ± 0.06 | ND | ND | ND | ND | ND | ND | ND |
24 | Geraniol | 0.6 ± 0.06 | 7.7 ± 0.15 | 3.2 ± 0.21 | 0.5 ± 0.06 | 4.4 ± 0.15 | 13 ± 6.76 | 10.7 ± 0.21 | 13.4 ± 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; He, H.; Yuan, L.; Wu, H.; Zhou, C. Determination of 24 Trace Aromatic Substances in Rosemary Hydrosol by Dispersed Liquid–Liquid Microextraction–Gas Chromatography. Processes 2024, 12, 498. https://doi.org/10.3390/pr12030498
Zeng X, He H, Yuan L, Wu H, Zhou C. Determination of 24 Trace Aromatic Substances in Rosemary Hydrosol by Dispersed Liquid–Liquid Microextraction–Gas Chromatography. Processes. 2024; 12(3):498. https://doi.org/10.3390/pr12030498
Chicago/Turabian StyleZeng, Xiaoming, Hao He, Liejiang Yuan, Haizhi Wu, and Cong Zhou. 2024. "Determination of 24 Trace Aromatic Substances in Rosemary Hydrosol by Dispersed Liquid–Liquid Microextraction–Gas Chromatography" Processes 12, no. 3: 498. https://doi.org/10.3390/pr12030498
APA StyleZeng, X., He, H., Yuan, L., Wu, H., & Zhou, C. (2024). Determination of 24 Trace Aromatic Substances in Rosemary Hydrosol by Dispersed Liquid–Liquid Microextraction–Gas Chromatography. Processes, 12(3), 498. https://doi.org/10.3390/pr12030498