Ionic Liquids as Potential Cleaning and Restoration Agents for Cellulosic Artefacts
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamburger, S. Preservation and Conservation for Libraries and Archives. Libr. Collect. Acquis. Tech. Serv. 2005, 29, 444–445. [Google Scholar] [CrossRef]
- Lischer-Katz, Z. The Emergence of Digital Reformatting in the History of Preservation Knowledge: 1823–2015. J. Doc. 2022, 78, 1249–1277. [Google Scholar] [CrossRef]
- Verticchio, E.; Frasca, F.; Bertolin, C.; Siani, A.M. Climate-Induced Risk for the Preservation of Paper Collections: Comparative Study among Three Historic Libraries in Italy. Build. Environ. 2021, 206, 108394. [Google Scholar] [CrossRef]
- Rakotonirainy, M.S.; Bénaud, O.; Vilmont, L.B. Contribution to the Characterization of Foxing Stains on Printed Books Using Infrared Spectroscopy and Scanning Electron Microscopy Energy Dispersive Spectrometry. Int. Biodeterior. Biodegrad. 2015, 101, 1–7. [Google Scholar] [CrossRef]
- Tian, W.; Wang, X.; Ye, Y.; Wu, W.; Wang, Y.; Jiang, S.; Wang, J.; Han, X. Recent Progress of Biomass in Conventional Wood Adhesives: A Review. Green Chem. 2023, 25, 10304–10337. [Google Scholar] [CrossRef]
- Marín, E.; Sistach, M.C.; Jiménez, J.; Clemente, M.; Garcia, G.; García, J.F. Distribution of Acidity and Alkalinity on Degraded Manuscripts Containing Iron Gall Ink. Restaurator 2015, 36, 229–247. [Google Scholar] [CrossRef]
- Zotti, M.; Ferroni, A.; Calvini, P. Mycological and FTIR Analysis of Biotic Foxing on Paper Substrates. Int. Biodeterior. Biodegrad. 2011, 65, 569–578. [Google Scholar] [CrossRef]
- ANSI/NISO Z39.48-1992 (R2009). Permanence of Paper for Publications and Documents in Libraries and Archives. NISO: Baltimore, MD, USA, 2010.
- Zervos, S.; Alexopoulou, I. Paper Conservation Methods: A Literature Review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Daniels, V.; Kosek, J. Studies on the Washing of Paper: Part 2: A Comparison of Different Washing Techniques Used on an Artificially Discoloured, Sized Paper. Restaurator 2004, 25, 260–266. [Google Scholar] [CrossRef]
- Corte, A.M.; Ferroni, A.; Salvo, V.S. Isolation of Fungal Species from Test Samples and Maps Damaged by Foxing, and Correlation between These Species and the Environment. Int. Biodeterior. Biodegrad. 2003, 51, 167–173. [Google Scholar] [CrossRef]
- Baty, J.; Maitland, C.L.; Minter, W.; Hubbe, M.A.; Jordan-Mowery, S.K. Deacidification for the conservation and preservation of paper-based works: A review. Bioresources 2010, 5, 1955–2023. [Google Scholar] [CrossRef]
- Niehus, L.; Henniges, U.; Horsky, M.; Prohaska, T.; Potthast, A.; Brückle, I. Reducing the Risks of Hydrogen Peroxide Bleaching in Presence of Iron Ions in Paper. Restaurator 2012, 33, 356–394. [Google Scholar] [CrossRef]
- Parfenov, V.; Galushkin, A.; Tkachenko, T.; Aseev, V. Laser Cleaning as Novel Approach to Preservation of Historical Books and Documents on a Paper Basis. Quantum Beam Sci. 2022, 6, 23. [Google Scholar] [CrossRef]
- Sarantopoulou, E.; Samardzija, Z.; Kobe, S.; Kollia, Z.; Cefalas, A.C. Removing Foxing Stains from Old Paper at 157 Nm. Appl. Surf. Sci. 2003, 208–209, 311–316. [Google Scholar] [CrossRef]
- Ahn, K.; Schedl, A.; Zweckmair, T.; Rosenau, T.; Potthast, A. Fire-induced structural changes and long-term stability of burned historical rag papers. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Meenatchi, B.; Renuga, V.; Manikandan, A. Cellulose Dissolution and Regeneration Using Various Imidazolium Based Protic Ionic Liquids. J. Mol. Liq. 2017, 238, 582–588. [Google Scholar] [CrossRef]
- El Seoud, O.A.; Kostag, M.; Jedvert, K.; Malek, N.I. Cellulose Regeneration and Chemical Recycling: Closing the “Cellulose Gap” Using Environmentally Benign Solvents. Macromol. Mater. Eng. 2020, 305, 1900832. [Google Scholar] [CrossRef]
- Porto, S.; Shugar, A.N. The Effectiveness of Two Cationic Fixatives in Stabilizing Water-Sensitive Dye-Based Inks on Paper. Book Pap. Group Annu. 2008, 27, 63–69. [Google Scholar]
- Croitoru, C.; Patachia, S.; Lunguleasa, A. New Method of Wood Impregnation with Inorganic Compounds Using Ethyl Methylimidazolium Chloride as Carrier. J. Wood Chem. Technol. 2015, 35, 113–128. [Google Scholar] [CrossRef]
- Croitoru, C.; Patachia, S.; Lunguleasa, A. A Mild Method of Wood Impregnation with Biopolymers and Resins Using 1-Ethyl-3-Methylimidazolium Chloride as Carrier. Chem. Eng. Res. Des. 2015, 93, 257–268. [Google Scholar] [CrossRef]
- Dimitrić, N.; Spremo, N.; Vraneš, M.; Belić, S.; Karaman, M.; Kovačević, S.; Karadžić, M.; Podunavac-Kuzmanović, S.; Korolija-Crkvenjakov, D.; Gadžurić, S. New Protic Ionic Liquids for Fungi and Bacteria Removal from Paper Heritage Artefacts. RSC Adv. 2019, 9, 17905–17912. [Google Scholar] [CrossRef]
- Rajitha, K.; Reddy, G.K.K.; Nancharaiah, Y.V. Assessment of Alkylimidazolium Chloride Ionic Liquid Formulations for Cleaning and Disinfection of Environmental Surfaces. Am. J. Infect. Control 2022, 50, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Irizar, P.; Gomez-Laserna, O.; Arana, G.; Madariaga, J.M.; Martínez-Arkarazo, I. Ionic Liquids (ILs)-Loaded Hydrogels as a Potential Cleaning Method of Metallic Stains for Stone Conservation. J. Cult. Herit. 2023, 64, 12–22. [Google Scholar] [CrossRef]
- Croitoru, C.; Patachia, S.; Porzsolt, A.; Friedrich, C. Effect of Alkylimidazolium Based Ionic Liquids on the Structure of UV-Irradiated Cellulose. Cellulose 2011, 18, 1469–1479. [Google Scholar] [CrossRef]
- Geweely, N.S. New Frontiers Review of Some Recent Conservation Techniques of Organic and Inorganic Archaeological Artefacts against Microbial Deterioration. Front. Microbiol. 2023, 14, 1146582. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.; Wagner, S.; Reppke, M.; Maier, C.L.; Windeisen-Holzhauser, E.; Philipp Benz, J. Preserving Cultural Heritage: Analyzing the Antifungal Potential of Ionic Liquids Tested in Paper Restoration. PLoS ONE 2019, 14, e0219650. [Google Scholar] [CrossRef]
- Caminiti, R.; Campanella, L.; Plattner, S.H.; Scarpellini, E. Effects of Innovative Green Chemical Treatments on Paper. Can They Help in Preservation? Int. J. Conserv. Sci. 2016, 7, 247–258. [Google Scholar]
- Kozirog, A.; Wysocka-Robak, A. Application of Ionic Liquids in Paper Properties and Preservation. In Progress and Developments in Ionic Liquids; IntechOpen: London, UK, 2017. [Google Scholar]
- Pernak, J.; Jankowska, N.; Walkiewicz, F.; Jankowska, A. The Use of Ionic Liquids in Strategies for Saving and Preserving Cultural Artifacts. Pol. J. Chem. 2008, 82, 2227–2230. [Google Scholar]
- Pacheco, M.F.; Pereira, A.I.; Branco, L.C.; Parola, A.J. Varnish Removal from Paintings Using Ionic Liquids. J. Mater. Chem. A Mater. 2013, 1, 7016. [Google Scholar] [CrossRef]
- Baglioni, M.; Raudino, M.; Berti, D.; Keiderling, U.; Bordes, R.; Holmberg, K.; Baglioni, P. Nanostructured Fluids from Degradable Nonionic Surfactants for the Cleaning of Works of Art from Polymer Contaminants. Soft Matter 2014, 10, 6798. [Google Scholar] [CrossRef]
- T 509 om-02. Hydrogen Ion Concentration (PH) of Paper Extracts (Cold Extraction Method). TAPPI: Atlanta, Georgia, 2002.
- Malešič, J.; Kraševec, I.; Cigić, I.K. Determination of Cellulose Degree of Polymerization in Historical Papers with High Lignin Content. Polymers 2021, 13, 1990. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of Lignin Content in Cellulose Pulp on Paper Durability. Sci. Rep. 2020, 10, 19998. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, C.; Patachia, S.; Doroftei, F.; Parparita, E.; Vasile, C. Ionic Liquids Influence on the Surface Properties of Electron Beam Irradiated Wood. Appl. Surf. Sci. 2014, 314, 956–966. [Google Scholar] [CrossRef]
- Artyushkova, K. GUI for Calculating Roughness Parameters of Images; The MathWorks, Inc.: Natick, MA, USA, 2010. [Google Scholar]
- T 494 om-02. Tensile Properties of Paper and Paperboard. TAPPI: Atlanta, Georgia, 2006.
- Zheng, L.Z.; Liang, X.T.; Li, S.R.; Li, Y.H.; Hu, D.D. Fading and Showing Mechanisms of Ancient Color Relics Based on Light Scattering Induced by Particles. RSC Adv. 2018, 8, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Min, D.; Long, X.; Tu, Q.; Zhang, K.; Wang, S.; Luo, L. Effect of Ionic Liquid Pretreatment on Paper Physical Property and Pulp Refining Performance. Nord. Pulp Pap. Res. J. 2019, 34, 495–506. [Google Scholar] [CrossRef]
- Ang, S.; Narayanan, J.R.; Kargupta, W.; Haritos, V.; Batchelor, W. Cellulose Nanofiber Diameter Distributions from Microscopy Image Analysis: Effect of Measurement Statistics and Operator. Cellulose 2020, 27, 4189–4208. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Comparison of the Characteristics of Cellulose Microfibril Aggregates of Wood, Rice Straw and Potato Tuber. Cellulose 2009, 16, 1017–1023. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.; Shen, S.; Xia, Y.; Li, Y.; Hu, D. Blurring of ancient wall paintings caused by binder decay in the pigment layer. Scientific Reports. 2020, 10, 21075. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Matsuo, M.; Umemura, K.; Kawai, S. Kinetic Analysis of Color Changes in Cellulose during Heat Treatment. J. Wood Sci. 2012, 58, 113–119. [Google Scholar] [CrossRef]
- Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. Electrochem. Energy Rev. 2022, 5, 14. [Google Scholar] [CrossRef]
- Mosca Conte, A.; Pulci, O.; Del Sole, R.; Knapik, A.; Bagniuk, J.; Lojewska, J.; Teodonio, L.; Missori, M. Experimental and Theoretical Study of the Yellowing of Ancient Paper. e-J. Surf. Sci. Nanotechnol. 2012, 10, 569–574. [Google Scholar] [CrossRef]
- Carter, H.A. The Chemistry of Paper Preservation Part 2. The Yellowing of Paper and Conservation Bleaching. J. Chem. Educ. 1996, 73, 1068. [Google Scholar] [CrossRef]
- Mosca Conte, A.; Pulci, O.; Knapik, A.; Bagniuk, J.; Del Sole, R.; Lojewska, J.; Missori, M. Role of Cellulose Oxidation in the Yellowing of Ancient Paper. Phys. Rev. Lett. 2012, 108, 158301. [Google Scholar] [CrossRef] [PubMed]
- Potthast, A.; Ahn, K. Critical Evaluation of Approaches toward Mass Deacidification of Paper by Dispersed Particles. Cellulose 2017, 24, 323–332. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Smith, R.D.; Zou, X.; Katuscak, S.; Potthast, A.; Ahn, K. Deacidification of Acidic Books and Paper by Means of Non-Aqueous Dispersions of Alkaline Particles: A Review Focusing on Completeness of the Reaction. Bioresources 2017, 12, 4410–4477. [Google Scholar] [CrossRef]
- Jeon, Y.; Sung, J.; Seo, C.; Lim, H.; Cheong, H.; Kang, M.; Moon, B.; Ouchi, Y.; Kim, D. Structures of Ionic Liquids with Different Anions Studied by Infrared Vibration Spectroscopy. J. Phys. Chem. B 2008, 112, 4735–4740. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, T.; Sidat, Z.; Kumar, P.; Choonara, Y.E. An Imidazolium-Based Ionic Liquid as a Model to Study Plasticization Effects on Cationic Polymethacrylate Films. Polymers 2023, 15, 1239. [Google Scholar] [CrossRef]
- Younis, O.M.; El Hadidi, N.M.N.; Darwish, S.S.; Mohamed, M.F. Preliminary Study on the Strength Enhancement of Klucel E with Cellulose Nanofibrils (CNFs) for the Conservation of Wooden Artifacts. J. Cult. Herit. 2023, 60, 41–49. [Google Scholar] [CrossRef]
- Xu, K.; Wang, J. Discovering the Effect of Alum on UV Photo-Degradation of Gelatin Binder via FTIR, XPS and DFT Calculation. Microchem. J. 2019, 149, 103934. [Google Scholar] [CrossRef]
- Boukir, A.; Fellak, S.; Doumenq, P. Structural Characterization of Argania Spinosa Moroccan Wooden Artifacts during Natural Degradation Progress Using Infrared Spectroscopy (ATR-FTIR) and X-Ray Diffraction (XRD). Heliyon 2019, 5, e02477. [Google Scholar] [CrossRef] [PubMed]
- Kostryukov, S.G.; Matyakubov, H.B.; Masterova, Y.Y.; Kozlov, A.S.; Pryanichnikova, M.K.; Pynenkov, A.A.; Khluchina, N.A. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. J. Anal. Chem. 2023, 78, 718–727. [Google Scholar] [CrossRef]
- Cocca, M.; D’Arienzo, L.; D’Orazio, L. Effects of Different Artificial Agings on Structure and Properties of Whatman Paper Samples. ISRN Mater. Sci. 2011, 2011, 863083. [Google Scholar] [CrossRef]
- Chillè, C.; Rossignoli, G.; Nagasawa, T.; Osticioli, I.; Agresti, J.; Siano, S.; Ciofini, D. Laser Cleaning of Artificially Soiled Cotton Fabric: Assessment of Surface Chemical Effects. J. Cult. Herit. 2023, 64, 1–11. [Google Scholar] [CrossRef]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous Cellulose—Structure and Characterization. Cellul. Chem. Technol. 2011, 45, 13. [Google Scholar]
- Chua, L.; Head, K.; Thomas, P.; Stuart, B. FTIR and Raman Microscopy of Organic Binders and Extraneous Organic Materials on Painted Ceremonial Objects from the Highlands of Papua New Guinea. Microchem. J. 2017, 134, 246–256. [Google Scholar] [CrossRef]
- Librando, V.; Minniti, Z.; Lorusso, S. Ancient and Modern Paper Characterization by FTIR and Micro-Raman Spectroscopy. Conserv. Sci. Cult. Herit. 2011, 11, 249–268. [Google Scholar]
- Ferrer, N.; Sistach, M.C. Characterisation by FTIR Spectroscopy of Ink Components in Ancient Manuscripts. Restaurator 2005, 26, 105–117. [Google Scholar]
- Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; Van Dam, J.E.G. Characterisation of Structure-Dependent Functional Properties of Lignin with Infrared Spectroscopy. Ind. Crops Prod. 2004, 20, 205–218. [Google Scholar] [CrossRef]
- Kljun, A.; Benians, T.A.S.; Goubet, F.; Meulewaeter, F.; Knox, J.P.; Blackburn, R.S. Comparative Analysis of Crystallinity Changes in Cellulose I Polymers Using ATR-FTIR, X-Ray Diffraction, and Carbohydrate-Binding Module Probes. Biomacromolecules 2011, 12, 4121–4126. [Google Scholar] [CrossRef]
- Calvini, P.; Vassallo, S.; Calvino, P.; Vassalo, S. Computer-Assisted Infrared Analysis of Heterogeneous Works of Art. e-Preserv. Sci. 2007, 4, 13–17. [Google Scholar]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Di Napoli, B.; Franco, S.; Severini, L.; Tumiati, M.; Buratti, E.; Titubante, M.; Nigro, V.; Gnan, N.; Micheli, L.; Ruzicka, B.; et al. Gellan Gum Microgels as Effective Agents for a Rapid Cleaning of Paper. ACS Appl. Polym. Mater. 2020, 2, 2791–2801. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Shi, Y.; Zhang, J.; Zhang, Y. Comparative Analysis of the Physical and Mechanical Properties of Kraft Paper and Watercolor Paper. Maderas Cienc. Tecnol. 2021, 23, 1–12. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Sun, Y.; Sun, S.; Shen, G.; Zhao, P.; Cui, J.; Qiao, H.; Wang, Y.; Zhou, H. Manufacturing Pure Cellulose Films by Recycling Ionic Liquids as Plasticizers. Green Chem. 2020, 22, 3835–3841. [Google Scholar] [CrossRef]
- Jele, T.B.; Lekha, P.; Sithole, B. Role of Cellulose Nanofibrils in Improving the Strength Properties of Paper: A Review. Cellulose 2022, 29, 55–81. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, S.; Wang, X.; Hao, J. Enhanced Mechanical Properties and Thermal Stability of Cellulose Insulation Paper Achieved by Doping with Melamine-Grafted Nano-SiO2. Cellulose 2018, 25, 3619–3633. [Google Scholar] [CrossRef]
Paper Type | Book Manufacture Year 1 | pH 2 | Paper Basis Weight | Composition 3 |
---|---|---|---|---|
P1 | 1953 | 3.12 (0.20) | 63 (0.18) g/m2 | 65% (1.16%) groundwood fiber content; 35% (1.23%) bleached chemical pulp, 1.5% (0.26%) ash content |
Ionic liquids type and structure | ||||
HMIMTs | HMIMCl |
Sample | pH | SIL (g of IL/g Paper) | CIE-L*a*b* Color Parameters | Mechanical Properties of Paper | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | ΔE* | BL (m) | σbr (MPa) | εf (%) | E (MPa) | T (MPa) | |||
P1 | 3.12 (0.20) | - | 53 (2.83) | 4 (0.14) | 39 (1.14) | - | 16.54 (1.13) | 5.11 (0.26) | 2.74 (0.32) | 67 | 0.11 |
P1-HMIMTs | 7.70 (0.15) | 0.47 (0.08) | 79 (2.48) | −2 (0.18) | 20 (1.23) | 32.75 | 24.57 (1.25) | 7.58 (1.24) | 4.05 (0.38) | 72 | 0.19 |
P1-HMIMCl | 7.05 (0.18) | 0.61 (0.06) | 84 (2.77) | −4 (0.22) | 23 (2.12) | 35.79 | 16.32 (1.38) | 5.14 (0.93) | 4.05 (0.42) | 59.42 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croitoru, C.; Roata, I.C. Ionic Liquids as Potential Cleaning and Restoration Agents for Cellulosic Artefacts. Processes 2024, 12, 341. https://doi.org/10.3390/pr12020341
Croitoru C, Roata IC. Ionic Liquids as Potential Cleaning and Restoration Agents for Cellulosic Artefacts. Processes. 2024; 12(2):341. https://doi.org/10.3390/pr12020341
Chicago/Turabian StyleCroitoru, Catalin, and Ionut Claudiu Roata. 2024. "Ionic Liquids as Potential Cleaning and Restoration Agents for Cellulosic Artefacts" Processes 12, no. 2: 341. https://doi.org/10.3390/pr12020341
APA StyleCroitoru, C., & Roata, I. C. (2024). Ionic Liquids as Potential Cleaning and Restoration Agents for Cellulosic Artefacts. Processes, 12(2), 341. https://doi.org/10.3390/pr12020341