Study on the Influencing Factors of CO2 Storage in Low Porosity-Low Permeability Heterogeneous Saline Aquifer
Abstract
1. Introduction
2. Regional Geology
3. Research Methods and Schemes
3.1. Simulation Method
3.2. Design and Establishment of the Geological Model
3.3. Initial and Boundary Conditions
3.4. Simulation Scheme Design
4. Results and Discussions
4.1. The Influence of Various Uncertain Factors on the Storage of Saltwater Layer
4.1.1. Salinity (wB/%)
4.1.2. Temperature (°C)
4.1.3. Horizontal and Vertical Permeability Ratio (Kxyz)
4.1.4. Pore Geometry Factor (λ)
4.1.5. Residual Gas Saturation (Sgr/%)
4.1.6. Liquid-Phase Saturation Degree (Sls/%)
4.1.7. Pore Compressibility (Pa-1)
4.2. Analysis of Influencing Factors of CO2 Storage in Saline Aquifer
4.2.1. Change of Pressure Field in Reservoir
4.2.2. Changes in Capture Amount Under Different Capture Mechanisms
4.2.3. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallapaty, S. How China could be carbon neutral by midcentury. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.F.; Tian, H.L.; Zhu, H.X.; Cai, J.C. China actively promotes CO2 capture, utilization and storage research to achieve carbon peak and carbon neutrality. Adv. Geo-Energy Res. 2022, 6, 1–3. [Google Scholar] [CrossRef]
- Zou, C.N.; Xue, H.Q.; Xiong, B.; Zhang, G.S.; Pan, S.Q.; Jia, C.Y.; Wang, Y.; Ma, F.; Sun, Q.; Guan, C.X.; et al. Connotation, innovation and vision of “carbon neutral”. Nat. Gas Ind. 2021, 41, 46–57. [Google Scholar] [CrossRef]
- Cui, G.D.; Hu, Z.; Ning, F.L.; Jiang, S.; Wang, R. A review of salt precipitation during CO2 injection into saline aquifers and its potential impact on carbon sequestration projects in China. Fuel 2023, 334, 126615. [Google Scholar] [CrossRef]
- Sotenko, M.; Fernández, J.; Hu, G.N.; Derevschikov, V.; Lysikov, A.; Parkhomchuk, E.; Semeykina, V.; Okunev, A.; Rebrov, E.V. Performance of novel CaO-based sorbents in high temperature CO2 capture under RF heating. Chem. Eng. Process. Process Intensif. 2017, 122, 487–492. [Google Scholar] [CrossRef]
- Fernández, J.; Sotenko, M.; Derevschikov, V.; Lysikov, A.; Rebrov, E.V. A radiofrequency heated reactor system for post-combustion carbon capture. Chem. Eng. Process. Process Intensif. 2016, 108, 17–26. [Google Scholar] [CrossRef]
- Chronopoulos, T.; Fernandez-Diez, Y.; Maroto-Valer, M.M.; Ocone, R.; Reay, D.A. CO2 desorption via microwave heating for post-combustion carbon capture. Microporous Mesoporous Mater. 2014, 197, 288–290. [Google Scholar] [CrossRef]
- Li, X.C.; Liu, Y.F.; Bai, B.; Fang, Z. Ranking and screening of CO2 saline aquifer storage zones in China. Chin. J. Rock Mech. Eng. 2006, 25, 963–968. [Google Scholar] [CrossRef]
- Guo, J.Q.; Wen, D.G.; Zhang, S.Q.; Xu, T.F.; Li, X.F.; Diao, Y.J.; Jia, X.F. Potential and suitability evaluation of CO2 geological storage in major sedimentary basins of China, and the demonstration project in Ordos Basin. Acta Geol. Sin.-Engl. Ed. 2015, 89, 1319–1332. [Google Scholar] [CrossRef]
- Cook, P.J.; Benson, S.M. Overview and current issues in geological storage of carbon dioxide. Greenh. Gas Control Technol. 2005, 7, 15–20. [Google Scholar] [CrossRef]
- Bachu, S.; Gunter, W.D.; Perkins, E.H. Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Convers. Manag. 1994, 35, 269–279. [Google Scholar] [CrossRef]
- Ebigbo, A.; Class, H.; Helmig, R. CO2 leakage through an abandoned well: Problem-oriented benchmarks. Comput Geosci 2007, 11, 103–115. [Google Scholar] [CrossRef]
- Seto, C.J.; Mcrae, G.J. Reducing risk in basin scale CO2 sequestration: A framework for integrated monitoring design. Environ. Sci. Technol. 2011, 45, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, R.; Keith, D. Executive summary of Wabamun Area CO2 sequestration project (WASP). In Energy and Environmental Systems Group Institute for Sustainable Energy, Environment and Economy (ISEEE); University of Calgary: Calgary, AB, Canada, 2010. [Google Scholar]
- Zhao, H.J.; Liao, X.W.; Chen, Y.F.; Zhao, X.L. Sensitivity analysis of CO2 sequestration in saline aquifers. Pet. Sci. 2010, 7, 372–378. [Google Scholar] [CrossRef]
- Sarkarfarshi, M.; Gracie, R. A Bayesian approach to mitigate parameter uncertainty in carbon dioxide sequestration models. In ARMA US Rock Mechanics/Geomechanics Symposium; ARMA: Kansas City, MO, USA, 2013. [Google Scholar]
- Dai, S.X.; Dong, Y.J.; Wang, F.; Xing, Z.H.; Hu, P.; Yang, F. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality. China Geol. 2022, 5, 359–371. [Google Scholar] [CrossRef]
- Mkemai, R.M.; Gong, B. Geological performance evaluation of CO2 sequestration in depleted oil reservoirs: A simulation study on the effect of water saturation and vertical to horizontal permeability ratio. J. Nat. Gas Sci. Eng. 2020, 76, 103196. [Google Scholar] [CrossRef]
- Sarkarfarshi, M.; Malekzadeh, F.A.; Gracie, R.; Dusseault, M.B. Parametric sensitivity analysis for CO2 geosequestration. Int. J. Greenh. Gas Control 2014, 23, 61–71. [Google Scholar] [CrossRef]
- Li, Y.L.; Fang, Q.; Ke, Y.B.; Dong, J.X.; Yang, G.D.; Ma, X. Effect of High Salinity on CO2 Geological Storage: A Case Study of Qianjiang Depression in Jianghan Basin. Earth Sci. 2012, 37, 283–288. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lai, F.P.; Dong, Y.T.; Dai, Y.T. Evaluation of CO2 storage effected by geological parameters of brine layer. J. China Coal Soc. 2024, 49, 3932–3943. [Google Scholar] [CrossRef]
- Yoshida, N.; Levine, J.S.; Stauffer, P.H. Investigation of uncertainty in CO2 reservoir models: A sensitivity analysis of relative permeability parameter values. Int. J. Greenh. Gas Control 2016, 49, 161–178. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.; Dunn-Norman, S.; Nygaard, R.; Eckert, A. Factors affecting CO2 storage capacity and efficiency with water withdrawal in shallow saline aquifers. Env. Earth Sci 2014, 71, 267–275. [Google Scholar] [CrossRef]
- Zheng, F.; Shi, X.Q.; Wu, J.C.; Zhao, L.; Chen, Y. Global Parametric Sensitivity Analysis of Numerical Simulation for CO2 Geological Sequestration in Saline Aquifers: A Case Study of Yancheng Formation in Subei Basin. J. Jilin Univ. (Earth Sci. Ed.) 2014, 44, 310–318. [Google Scholar] [CrossRef]
- Tiamiyu, O.M.; Nygaard, R.; Bai, B. Effect of aquifer heterogeneity, brine withdrawal, and well-completion strategy on CO2 injectivity in shallow saline aquifer. In SPE International Conference on CO2 Capture, Storage, and Utilization; SPE: Houston, TX, USA, 2010; p. 139583. [Google Scholar]
- Yang, F.; Bai, B.; Dunn-Norman, S. Modeling the effects of completion techniques and formation heterogeneity on CO2 sequestration in shallow and deep saline aquifers. Env. Earth Sci 2011, 64, 841–849. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.; Nygaard, R.; Dunn-Norman, S. Impact of water withdrawal on CO2 sequestration in Missouri shallow saline aquifers. In Proceedings of the 10th Annual Conf. Carbon Capture Sequestration, Pittsburgh, PA, USA, 2–5 May 2011. [Google Scholar]
- Sun, J.P.; Dong, Y.P. Triassic tectonic interactions between the alxa massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, north China. J. Asian Earth Sci. 2019, 169, 162–181. [Google Scholar] [CrossRef]
- Hanson, A.D.; Ritts, B.D.; Moldowan, J.M. Organic geochemistry of oil and source rock strata of the Ordos Basin, north-central China. AAPG Bull. 2007, 91, 1273–1293. [Google Scholar] [CrossRef]
- Wang, J.M.; Wang, J.Y. Low-amplitude structures and oil-gas enrichment on the Yishaan Slope, Ordos Basin. Pet. Explor. Dev. 2013, 40, 49–57. [Google Scholar] [CrossRef]
- Zhang, Z.J. Study on the petrological characteristics of sandstones of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin. China Coal Geol. 2022, 9, 18–26. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Lu, S.; Lin, L.; Zhou, N.; Liu, Y. Differential development characteristics of secondary pores and effects on pore structure and movable fluid distribution in tight gas sandstones in the lower Permian, northeastern Ordos Basin, China. Geoenergy Sci. Eng. 2023, 224, 211580. [Google Scholar] [CrossRef]
- Tan, C.; Yu, B.S.; Yuan, X.J.; Liu, C.; Wang, T.S.; Zhu, X. Color Origin of the Lower Triassic Liujiagou and Heshanggou Formations Red Beds in the Ordos Basin. Geoscience 2020, 34, 769–783. [Google Scholar] [CrossRef]
- Tan, C. Sedimentary Characteristics and Paleoclimate Evolution of the Upper Permian-Middle-Upper Triassic in the Ordos Basin. Doctoral Dissertation, China University of Geosciences, Beijing, China, 2017. [Google Scholar]
- Wan, Y.R.; Li, X.B.; Zhang, C.L.; Yang, Y.J.; Liao, J.B.; Li, Z.Y.; Wang, J. Study on Stratigraphic Distribution and Sedimentary Facies of the Middle and Lower Triassic in Ordos Basin. Abstracts of Sedimentology and Unconventional Resources Papers of the 2015 National Sedimentology Congress. 2015. Available online: https://kns.cnki.net/kcms2/article/abstract?v=jEKy9Hq18ML-9S3J2mun9tLPtIZyZhF7ml23zglGlz67JwOa1KqoMtImH-YsmW9khBrBe2Wb-7o1RZykrz3EnZuDgqBMChdbEcsHVM0MGNs3y1-9cyBtRVmGkod0A039je1HPQGJZdmuA8QBGUlUDgoxwouUC65shwHjw5YNkBidzVRqZRI7_Xt5jzwnpO64IhioIWzrSZc=&uniplatform=NZKPT&language=CHS (accessed on 15 November 2024).
- Diao, Y.J. Study on Reservoir Characterization and CO2 Migration Law of Shenhua CCS Demonstration Project Site. Doctoral Dissertation, China University of Mining and Technology, Beijing, China, 2017. [Google Scholar]
- Pruess, K. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2005; Volume 497. [Google Scholar]
- Pruess, K.; Oldenburg, C.M.; Moridis, G. TOUGH2 User’s Guide Version 2; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999. [Google Scholar]
- Alcott, A.; Swenson, D.; Hardeman, B. Using petrasim to create, execute, and post-process TOUGH2 models. In Proceedings of the TOUGH Symposium, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 15–17 May 2006. [Google Scholar]
- RockWare. Petrasim User Manual. 2018. Available online: https://www.rockware.com/downloads/documentation/petrasim/PetraSimManual.pdf (accessed on 15 November 2024).
- Xie, J.; Zhang, K.N.; Wang, Y.S.; Qin, L.Q.; Guo, C.B. Evaluation of CO2 geological storage effect in deep saline aquifer of Ordos. Geomechanics 2016, 1, 166–174+184. [Google Scholar] [CrossRef]
- De Gennaro, V.; Frank, R. Elasto-plastic analysis of the interface behaviour between granular media and structure. Comput. Geotech. 2002, 29, 547–572. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, K.N.; Hu, L.T. Preliminary study on multi-well and injection simulation of Shenhua Ordos CO2 geological storage site. J. Beijing Norm. Univ. (Nat. Sci. Ed.) 2015, 6, 636–642. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, K.; Li, C.; Wang, Y. Preliminary study on the CO2 injectivity and storage capacity of low-permeability saline aquifers at Chenjiacun site in the Ordos Basin. Int. J. Greenh. Gas Control 2016, 52, 215–230. [Google Scholar] [CrossRef]
- PetraSim. TOUGHREACT Example: CO2 Disposal in Deep Saline Aquifers. PetraSim 2016.1. Thunderhead Eng. 2016, 1–24. Available online: https://www.rockware.com/downloads/documentation/petrasim/examples_toughreact_CO2_Disposal.pdf (accessed on 8 August 2016).
- Onoja, M.U.; Ahmadinia, M.; Shariatipour, S.M.; Wood, A.M. Characterising the role of parametric functions in the van Genuchten empirical model on CO2 storage performance. Int. J. Greenh. Gas Control 2019, 88, 233–250. [Google Scholar] [CrossRef]
- Oostrom, M.; White, M.D.; Porse, S.L.; Krevor, S.C.M.; Mathias, S.A. Comparison of relative permeability–saturation–capillary pressure models for simulation of reservoir CO2 injection. Int. J. Greenh. Gas Control 2016, 45, 70–85. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Freifeld, B.; Finsterle, S.; Leahy, M.; Ennis-King, J.; Paterson, L.; Dance, T. Single-well experimental design for studying residual trapping of supercritical carbon dioxide. Int. J. Greenh. Gas Control 2011, 5, 88–98. [Google Scholar] [CrossRef]
- Sheng, J.L.; Huang, T.; Ye, Z.Y.; Hu, B.; Liu, Y.N.; Fan, Q.L. Evaluation of van Genuchten-Mualem model on the relative permeability for unsaturated flow in aperture-based fractures. J. Hydrol. 2019, 576, 315–324. [Google Scholar] [CrossRef]
- Wilkinson, M.; Haszeldine, R.S.; Fallick, A.E.; Odling, N.; Stoker, S.J.; Gatliff, R.W. CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J. Sediment. Res. 2009, 79, 486–494. [Google Scholar] [CrossRef]
- Pickup, G.E.; Jin, M.; Olden, P.; Mackay, E.; Todd, A.C.; Ford, J.R.; Lawrence, D.; Monaghan, A.; Naylor, M.; Haszeldine, R.S.; et al. Geological storage of CO2: Site appraisal and modelling. Energy Procedia 2011, 4, 4762–4769. [Google Scholar] [CrossRef]
- Ghanbari, S.; Al-Zaabi, Y.; Pickup, G.E.; Mackay, E.; Gozalpour, F.; Todd, A.C. Simulation of CO2 storage in saline aquifers. Chem. Eng. Res. Des. 2006, 84, 764–775. [Google Scholar] [CrossRef]
- Wu, S.L. Mass Transfer of Carbon Dioxide in Deep SALINE Aquifers. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2015. [Google Scholar]
- Kim, K.Y.; Han, W.S.; Oh, J.; Kim, T.; Kim, J.C. Characteristics of Salt-Precipitation and the Associated Pressure Build-Up during CO2 Storage in Saline Aquifers. Transp. Porous Med. 2012, 92, 397–418. [Google Scholar] [CrossRef]
- Li, C.L.; Zhu, S.Y. Some problems about rock compression coefficient. Nat. Gas Explor. Dev. 2018, 4, 116–122. Available online: https://kns.cnki.net/kcms2/article/abstract?v=oGsGy-nFbJT8UMQXxzyJHqs0VPOe_j4MNP8dAULS6b9JWUxpMqKy7_wi8E6K7DXjyg6tpKEHIhoHQOllCDesiP42I89hz8IA7Bb4wyr412-vG3kjtoBE884PBqpGhmYPaXyBtzOJus2FzKQNviYjY9weNCxR4nM5jqgY8o_9XRq5nl8Z_x-zimnlPIlrcJ8b&uniplatform=NZKPT&language=CHS (accessed on 18 December 2024).
- Dou, H.E. Discussion on the problems related to rock compressibility and porosity in oilfield development. Xinjiang Pet. Geol. 2012, 5, 617–622. [Google Scholar]
- Xue, Y.Q.; Xie, C.H. Groundwater Numerical Simulation; Science Press: Beijing, China, 2007; pp. 402–404. (In Chinese) [Google Scholar]
- Yu, Y.; Li, Y.L.; Yang, G.D.; Liu, D.Q.; Jiang, F.C.; Yang, S. Study on the influence of reservoir physical parameters on the long-term storage capacity of CO2. Saf. Environ. Eng. 2017, 5, 75–83+89. [Google Scholar] [CrossRef]
- Yang, G.D. Study on the Mechanism of Carbon Dioxide Geological Storage in Ordos Basin. Doctoral Dissertation, China University of Geosciences, Wuhan, China, 2015. [Google Scholar]
Reservoir | Stratification | Depth Interval [m] | Thickness [m] | Porosity (%) | Permeability [mD] |
---|---|---|---|---|---|
LJG3 | LJG34 | 1368–1374 | 6 | 5.6 | 0.17 |
LJG33 | 1374–1379 | 5 | 6 | 0.22 | |
LJG32 | 1379–1387 | 8 | 5.13 | 0.11 | |
LJG31 | 1387–1392 | 5 | 8.99 | 1.34 | |
LJG2 | LJG22 | 1405–1410 | 5 | 10.18 | 2.3 |
LJG21 | 1410–1418 | 8 | 5.83 | 0.2 | |
LJG1 | LJG13 | 1426–1429 | 3 | 8.17 | 0.88 |
LJG12 | 1429–1434 | 5 | 8.56 | 1.1 | |
LJG11 | 1434–1439 | 5 | 9.67 | 1.84 |
Fm | T °C | P MPa | wB % | CWET W/(m*k) | SPHT J/(kg*k) | Slr | Sgr | Sgs | Sls | C Pa−1 | P0 kpa | ρ kg.m−3 | Kxyz |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LJG | 52.4 | 15.26 | 3 | 2.51 | 920 | 0.30 | 0.05 | 1 | 1&0.99 | 4.5 × 10−10 | 11.2 | 2400 | 1:10 |
wB/% | T/°C | Kxyz | λ | Sgr/% | C | Sls/% | ||
---|---|---|---|---|---|---|---|---|
Scaling | 0.01 | 41.10 | 1:30 | 0.35 | 0.01 | 1.10 | Scaling 1 | 0.95 |
Default | 0.03 | 52.4 | 1:10 | 0.457 | 0.05 | 4.50 | Scaling 2 | 0.98 |
Larger | 0.1 | 76.6 | 1:1 | 0.55 | 0.25 | 6.80 | Default | 1 |
Salt | Kxyz | T | λ | Sgr | Sls | ||
---|---|---|---|---|---|---|---|
Scaling case/Pa | 1.741 × 107 | 1.698 × 107 | 1.741 × 107 | 1.754 × 107 | 1.741 × 107 | Scaling1 case/Pa | 1.737 × 107 |
Default case/Pa | 1.746 × 107 | 1.746 × 107 | 1.746 × 107 | 1.746 × 107 | 1.746 × 107 | Scaling2 case/Pa | 1.742 × 107 |
Larger case/Pa | 1.765 × 107 | 1.775 × 107 | 1.743 × 107 | 1.737 × 107 | 1.757 × 107 | Default case/Pa | 1.746 × 107 |
Salt | C | Kxyz | T | λ | Sgr | Sls | ||
---|---|---|---|---|---|---|---|---|
Scaling reserve/kg | 1.42 × 108 | 1.41 × 108 | 1.28 × 108 | 1.27 × 108 | 1.08 × 108 | 1.43 × 108 | Scaling1 reserve/kg | 1.53 × 108 |
Default reserve/kg | 1.41 × 108 | 1.41 × 108 | 1.41 × 108 | 1.41 × 108 | 1.41 × 108 | 1.41 × 108 | Scaling2 reserve/kg | 1.46 × 108 |
Larger reserve/kg | 1.38 × 108 | 1.42 × 108 | 1.67 × 108 | 1.46 × 108 | 1.61 × 108 | 1.11 × 108 | Default reserve/kg | 1.41 × 108 |
Salt | C | Kxyz | T | λ | Sgr | Sls | ||
---|---|---|---|---|---|---|---|---|
Scaling reserve/kg | 3.70 × 107 | 3.44 × 107 | 3.11 × 107 | 3.08 × 107 | 3.13 × 107 | 3.95 × 107 | Scaling1 reserve/kg | 3.46 × 107 |
Default reserve/kg | 3.45 × 107 | 3.45 × 107 | 3.45 × 107 | 3.45 × 107 | 3.45 × 107 | 3.45 × 107 | Scaling2 reserve/kg | 3.46 × 107 |
Larger reserve/kg | 2.65 × 107 | 3.46 × 107 | 3.87 × 107 | 4.23 × 107 | 3.51 × 107 | 1.64 × 107 | Default reserve/kg | 3.45 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Wang, D.; Diao, Y.; Zhang, C.; Wang, T. Study on the Influencing Factors of CO2 Storage in Low Porosity-Low Permeability Heterogeneous Saline Aquifer. Processes 2024, 12, 2933. https://doi.org/10.3390/pr12122933
Hu H, Wang D, Diao Y, Zhang C, Wang T. Study on the Influencing Factors of CO2 Storage in Low Porosity-Low Permeability Heterogeneous Saline Aquifer. Processes. 2024; 12(12):2933. https://doi.org/10.3390/pr12122933
Chicago/Turabian StyleHu, Hongchang, Dongdong Wang, Yujie Diao, Chunyuan Zhang, and Ting Wang. 2024. "Study on the Influencing Factors of CO2 Storage in Low Porosity-Low Permeability Heterogeneous Saline Aquifer" Processes 12, no. 12: 2933. https://doi.org/10.3390/pr12122933
APA StyleHu, H., Wang, D., Diao, Y., Zhang, C., & Wang, T. (2024). Study on the Influencing Factors of CO2 Storage in Low Porosity-Low Permeability Heterogeneous Saline Aquifer. Processes, 12(12), 2933. https://doi.org/10.3390/pr12122933