Optimal Economic and Environmental Aspects in Different Types of Loads via Modified Capuchin Algorithm for Standalone Hybrid Renewable Generation Systems
Abstract
:1. Introduction
2. System Description
2.1. PV Source
2.2. Wind Generation Turbines
2.3. Diesel Generator
2.4. Battery Storage
2.5. Power Converter
2.6. Load Profile
3. Optimization Methods
3.1. PSO Algorithm
3.2. Capuchin Search Algorithm (CapSA)
- (a)
- Leaping motion
- (b)
- Swinging motion
- (c)
- Climbing motion
3.3. Modified Capuchin Search Algorithm (MCapSA)
3.4. HOMER Pro
3.5. Genetic Algorithm
4. Economic and Reliability Objective Functions
4.1. Economic Objective Function
4.2. Reliability Objective Function
4.3. Environmental Constraints
5. Simulation Results and Discussion
5.1. Scenario 1: Educational Load
5.2. Scenario 2: Residential Load
5.3. Scenario 3: DSM-Based Residential Load
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HRGS | hybrid renewable generation system | GA | genetic algorithm |
MCapSA | modified capuchin search algorithm | CoE | cost of energy |
PSO | particle swarm optimization | GHG | greenhouse gases |
ESD | electric source deficit | DSM | demand-side management |
NOCT | normal operating cell temperature (°C) | DOD | depth of discharge (%) |
NPC | net present cost | AD | autonomy days |
References
- Abdelwahab, S.A.M.; Mohamed, M.; Ebeed, M.; Abdellatif, W.S.E. Equilibrium Optimizer and FLC of Two Area Load Frequency control with Multi-Source Generators System. Int. J. Renew. Energy Res. 2022, 12, 2180–2188. [Google Scholar]
- Rousis, A.O.; Tzelepis, D.; Konstantelos, I.; Booth, C.; Strbac, G. Design of a hybrid AC/DC microgrid using HOMER pro: Case study on an Islanded residential application. Inventions 2018, 3, 55. [Google Scholar] [CrossRef]
- Tazay, A. Techno-Economic Feasibility Analysis of a Hybrid Renewable Energy Supply Options for University Buildings in Saudi Arabia. Open Eng. 2021, 11, 39–55. [Google Scholar] [CrossRef]
- Mohseni, M.; Amirghafouri, F.; Pourghebleh, B. CEDAR: A cluster-based energy-aware data aggregation routing protocol in the internet of things using capuchin search algorithm and fuzzy logic. Peer-to-Peer Netw. Appl. 2023, 16, 189–209. [Google Scholar] [CrossRef]
- Alruwaili, O.; Mohamed, M. Performance improvement of rotor current controller in doubly fed induction gen-eration wind turbine with artificial intelligence methods. Energy Rep. 2024, 11, 2236–2254. [Google Scholar] [CrossRef]
- Razmjoo, A.; Shirmohammadi, R.; Davarpanah, A.; Pourfayaz, F.; Aslani, A. Stand-alone hybrid energy systems for remote area power Generation. Energy Rep. 2019, 5, 231–241. [Google Scholar] [CrossRef]
- Abu-Hijleh, B.; Jaheen, N. Energy and economic impact of the new Dubai municipality green building regulations and potential upgrades of the regulations. Energy Strategy Rev. 2019, 24, 51–67. [Google Scholar] [CrossRef]
- Elnozahy, A.; Yousef, A.M.; Ghoneim, S.S.M.; Abdelwahab, S.A.M.; Mohamed, M.; Abo-Elyousr, F.K. Optimal economic and environmental indices for hybrid PV/wind-based battery storage system. J. Electr. Eng. Technol. 2021, 16, 2847–2862. [Google Scholar] [CrossRef]
- Nsafon, B.E.K.; Owolabi, A.B.; Butu, H.M.; Roh, J.W.; Suh, D.; Huh, J.-S. Optimization and sustainability analysis of PV/wind/diesel hybrid energy system for decentralized energy generation. Energy Strategy Rev. 2020, 32, 100570. [Google Scholar] [CrossRef]
- Khan, M.J.; Yadav, A.K.; Mathew, L. Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India. Renew. Sustain. Energy Rev. 2017, 76, 577–607. [Google Scholar] [CrossRef]
- Mandal, S.; Das, B.K.; Hoque, N. Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. J. Clean. Prod. 2018, 200, 12–27. [Google Scholar] [CrossRef]
- Keyvandarian, A.; Saif, A. Optimal sizing of a reliability-constrained, stand-alone hybrid renewable energy system using robust satisficing. Renew. Energy 2023, 204, 569–579. [Google Scholar] [CrossRef]
- Babaei, R.; Ting, D.S.-K.; Carriveau, R. Feasibility and optimal sizing analysis of stand alone hybrid energy systems coupled with various battery technologies: A case study of Pelee Island. Energy Rep. 2022, 8, 4747–4762. [Google Scholar] [CrossRef]
- Mokhtara, C.; Negrou, B.; Bouferrouk, A.; Yao, Y.; Settou, N.; Ramadan, M. Integrated supply–demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates. Energy Convers. Manag. 2020, 221, 113192. [Google Scholar] [CrossRef]
- Tezer, T.; Yaman, R.; Yaman, G. Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2017, 73, 840–853. [Google Scholar] [CrossRef]
- Moretti, L.; Polimeni, S.; Meraldi, L.; Raboni, P.; Leva, S.; Manzolini, G. Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids. Renew. Energy 2019, 143, 1439–1453. [Google Scholar] [CrossRef]
- Abba, S.; Najashi, B.G.; Rotimi, A.; Musa, B.; Yimen, N.; Kawu, S.; Lawan, S.; Dagbasi, M. Emerging Harris Hawks Optimization based load demand forecasting and optimal sizing of stand-alone hybrid renewable energy systems—A case study of Kano and Abuja, Nigeria. Results Eng. 2021, 12, 100260. [Google Scholar] [CrossRef]
- Das, B.K.; Hasan, M. Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat. Energy 2021, 214, 119036. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Peng, X.; Cao, S.; Tang, Z.; Li, K.; Fan, S.; Xue, W.; Yao, G.; Xu, S. A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation. Energy 2024, 306, 132495. [Google Scholar] [CrossRef]
- Mukhtar, S.; Muhammad, S.; Alyousef, H.A.; Khan, W.; Shah, R.; El-Tantawy, S.A. Enviro-economic and optimal hybrid energy system: Photovoltaic–biogas–hydro–battery system in rural areas of Pakistan. Heliyon 2024, 10, 35182. [Google Scholar] [CrossRef]
- AlHajri, I.; Ahmadian, A.; Alazmi, R. A comprehensive technical, economic, and environmental evaluation for optimal planning of renewable energy resources to supply water desalination units: Kuwait case study. Energy 2023, 275, 127416. [Google Scholar] [CrossRef]
- Yimen, N.; Tchotang, T.; Kanmogne, A.; Abdelkhalikh Idriss, I.; Musa, B.; Aliyu, A.; Okonkwo, E.C.; Abba, S.I.; Tata, D.; Meva’a, L.; et al. Optimal sizing and techno-economic analysis of hybrid renewable energy systems—A case study of a photovoltaic/wind/battery/diesel system in Fanisau, Northern Nigeria. Processes 2020, 8, 1381. [Google Scholar] [CrossRef]
- Xu, X.; Hu, W.; Cao, D.; Huang, Q.; Chen, C.; Chen, Z. Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system. Renew. Energy 2020, 147, 1418–1431. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Lin, X.; Okba, M.I. Hybrid renewable microgrid optimization techniques: A review. Renew. Sustain. Energy Rev. 2018, 82, 2039–2052. [Google Scholar] [CrossRef]
- Khan, M.; Iqbal, M. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland, Renew. Energy 2005, 30, 835–854. [Google Scholar]
- Nsafon, B.E.K.; Butu, H.M.; Owolabi, A.B.; Roh, J.W.; Suh, D.; Huh, J.-S. Integrating multi-criteria analysis with PDCA cycle for sustainable energy planning in Africa: Application to hybrid mini-grid system in Cameroon. Sustain. Energy Technol. Assess. 2020, 37, 100628. [Google Scholar] [CrossRef]
- Hrayshat, E.S. Techno-economic analysis of autonomous hybrid photovoltaicdiesel- battery system. Energy Sustain. Dev. 2009, 13, 143–150. [Google Scholar] [CrossRef]
- Amer, M.; Namaane, A.; M’Sirdi, N.K. Optimization of Hybrid Renewable Energy Systems (HRES) Using PSO for Cost Reduction. Energy Procedia 2013, 42, 318–327. [Google Scholar] [CrossRef]
- Safari, S.; Ardehali, M.M.; Sirizi, M.J. Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage Global Conference on Renewable energy and Energy Efficiency for Desert Regions 2011 GCREEDER 2011. Energy Convers. Manag. 2013, 65, 41–49. [Google Scholar] [CrossRef]
- Ebeed, M.; Ahmed, D.; Kamel, S.; Jurado, F.; Shaaban, M.F.; Ali, A.; Refai, A. Optimal Energy planning of Multi-Micro Grids at Stochastic Nature of Load demand and Renewable Energy Resources using a Modified Capuchin Search Algorithm. Neural Comput. Appl. 2023, 35, 17645–17670. [Google Scholar] [CrossRef]
- Braik, M.; Sheta, A.; Al-Hiary, H. A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm. Neural Comput. Appl. 2021, 33, 2515–2547. [Google Scholar] [CrossRef]
- Abdelwahab, S.A.M.; Yousef, A.M.; Ebeed, M.; Abo-Elyousr, F.K.; Elnozohy, A.; Mohamed, M. Optimization of PID controller for hybrid renewable energy system using adaptive sine cosine algorithm. Int. J. Renew. Energy Res. 2020, 10, 670–677. [Google Scholar]
- Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers. Manag. 2016, 128, 178–190. [Google Scholar] [CrossRef]
- Zeng, J.; Li, M.; Liu, J.F.; Wu, J.; Ngan, H.W. Operational optimization of a stand-alone hybrid renewable energy generation system based on an improved genetic algorithm. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010. [Google Scholar]
- Ghofrani, M.; Hosseini, N.N. Optimizing Hybrid Renewable Energy Systems: A Review. Sustain. Energy—Technol. Issues Appl. Case Stud. 2016, 8, 161–176. [Google Scholar]
Decision Variables | PV Size (kW) | Wind Turbines (No.) | Autonomy Days (Days) |
---|---|---|---|
Lower limit | 30 | 5 | 3 |
Upper limit | 950 | 890 | 5 |
Parameter | Unit | PSO | GA | CapSA | MCapSA | HOMER |
---|---|---|---|---|---|---|
PV energy | kW | 493.03 | 476.75 | 483.49 | 474.6 | 1118 |
Autonomy days | Days | 5 | 5 | 5 | 5 | 5 |
Wind turbine | No. | 838.42 | 822.79 | 850.00 | 820.00 | 610 |
Annualized cost () | USD | 264,717.14 | 262,001.04 | 264,952.25 | 261,500 | 279,606 |
CoE | USD/kWh | 0.166 | 0.164 | 0.166 | 0.162 | 0.334 |
ESD | % | 3.1 | 3.3 | 3 | 3 | 0.552 |
GHG | kg | 8.096 | 8.096 | 8.096 | 8.032 | 9.502 |
RF | % | 99.99 | 99.99 | 99.99 | 99.99 | 99 |
Parameter | Unit | PSO | GA | CapSA | MCapSA | HOMER |
---|---|---|---|---|---|---|
PV energy | kW | 33.6 | 31.9 | 32.9 | 31 | 65.8 |
Autonomy days | Days | 5 | 5 | 5 | 5 | 5 |
Wind turbine | No. | 232 | 32 | 232 | 30 | 6793 |
USD | 42,172.9 | 24,079.5 | 42,136.7 | 22,079.3 | 279,606 | |
CoE | USD/kWh | 0.234 | 0.133 | 0.233 | 0.121 | 0.383 |
ESD | % | 14.4 | 35.7 | 14.4 | 35 | 0.559 |
GHG | kg | 1424.9 | 510 | 1424.9 | 507 | 1950 |
RF | % | 99.6 | 99.7 | 99.7 | 99.7 | 99 |
Parameter | Unit | PSO | GA | CapSA | MCapSA | HOMER |
---|---|---|---|---|---|---|
PV energy | kW | 61.7 | 63.2 | 63.3 | 61.8 | 61.8 |
Autonomy days | Days | 5 | 5 | 5 | 5 | 4 |
Wind turbine | No. | 151 | 30 | 140 | 51 | 180 |
USD | 37,171.8 | 26,612.8 | 37,209 | 25,209.7 | 55,569 | |
CoE | USD/kWh | 0.206 | 0.147 | 0.206 | 0.106 | 0.436 |
ESD | % | 4 | 12.8 | 8 | 4 | 0.570 |
GHG | kg | 267.2 | 145.7 | 267.2 | 137.2 | 315.4 |
RF | % | 99.9 | 99.9 | 99.9 | 99.9 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.; El-Rifaie, A.M.; Boulkaibet, I.; Elnozahy, A. Optimal Economic and Environmental Aspects in Different Types of Loads via Modified Capuchin Algorithm for Standalone Hybrid Renewable Generation Systems. Processes 2024, 12, 2902. https://doi.org/10.3390/pr12122902
Mohamed M, El-Rifaie AM, Boulkaibet I, Elnozahy A. Optimal Economic and Environmental Aspects in Different Types of Loads via Modified Capuchin Algorithm for Standalone Hybrid Renewable Generation Systems. Processes. 2024; 12(12):2902. https://doi.org/10.3390/pr12122902
Chicago/Turabian StyleMohamed, Moayed, Ali M. El-Rifaie, Ilyes Boulkaibet, and Ahmed Elnozahy. 2024. "Optimal Economic and Environmental Aspects in Different Types of Loads via Modified Capuchin Algorithm for Standalone Hybrid Renewable Generation Systems" Processes 12, no. 12: 2902. https://doi.org/10.3390/pr12122902
APA StyleMohamed, M., El-Rifaie, A. M., Boulkaibet, I., & Elnozahy, A. (2024). Optimal Economic and Environmental Aspects in Different Types of Loads via Modified Capuchin Algorithm for Standalone Hybrid Renewable Generation Systems. Processes, 12(12), 2902. https://doi.org/10.3390/pr12122902