Synthesis of a Novel Polymer Adsorbent and Its Adsorption of Pb (II) and Cu (II) Ions in Water
Abstract
:1. Introduction
2. Experimental
2.1. Instrumentation and Methods
2.2. Materials
2.3. Synthesis of TOC
2.4. Batch Procedure
3. Results and Discussion
3.1. Characterization
3.1.1. Infrared Spectral Analysis of TOC
3.1.2. Molecular Weight Determination of TOC
3.1.3. EDS Analysis of TOC
3.1.4. Scanning Electron Microscopy Analysis of TOC
3.1.5. Thermogravimetric (TG) Analysis
3.2. Study on Adsorption Performance
3.2.1. Saturated Adsorption Capacity
3.2.2. Influence of pH Value
3.2.3. Effect of Contacting Time on the Adsorption Capacity
3.2.4. Selection of Eluents
3.2.5. Reusability of Adsorbents
3.2.6. Adsorption Isotherm Model
3.2.7. Adsorption Kinetics Model
4. Conclusions
- (1)
- In this article, the polymer adsorbent TOC containing an S functional group was successfully synthesized by thiophene and oxalyl chloride. The successful synthesis of TOC was confirmed by IR, molecular weight determination, EDS, SEM, and TG.
- (2)
- For Pb (II), the maximum adsorption capacity of TOC can reach 122.7 mg/g (0.593 mmol/g) at pH = 4, 250 min. After adsorption, it can be desorbed with 1.00 mol/L HCl, and the adsorbent can be reused 10 times; for Cu (II), the maximum adsorption capacity of TOC can reach 95.9 mg/g (1.498 mmol/g) at pH = 6, 180 min. After adsorption, it can be desorbed with 0.50 mol/L HNO3, and the adsorbent can be reused 11 times. The adsorption process of TOC on Pb (II) and Cu (II) conforms to the Freundlich model of multi-layer adsorption, and the chemical adsorption process is controlled by pseudo-second-order kinetic reactions.
- (3)
- Adsorbents of the same quality adsorb more substances of Cu (II) than Pb (II), in a shorter time and with more repeated use. The reason may be because Cu (II) has a smaller radius, can accommodate more in a limited space, moves faster, and is easier to desorb.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoda, G.; Mohsen, T. Efficient adsorption of lead and copper from water by modification of sand filter with a green plant-based adsorbent: Adsorption kinetics and regeneration. Environ. Res. 2024, 259, 119529. [Google Scholar] [CrossRef]
- Jin, C.; Hua, Z.; Asfandyar, S.; Shehnaz, A.F.A.; Shengbo, G.; Christian, S.; Zhen, M.; Chao, H. Efficient removal of heavy metals using 1,3,5-benzenetricarboxylic acid-modified zirconium-based organic frameworks. Environ. Technol. Innov. 2024, 33, 103516. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, T.; Cheng, C.; Wang, Z.; Li, H.; Zhao, Y. Efficient removal and stepwise recovery of various heavy metals from water by using calcium carbonate with different activity. Sep. Purif. Technol. 2025, 354, 129142. [Google Scholar] [CrossRef]
- Sonali, R.D.; Satyajit, M.D.; Ajinkya, K.; Amaya, S. A review outlook on methods for removal of heavy metal ions from wastewater. Sep. Purif. Technol. 2024, 350, 127868. [Google Scholar] [CrossRef]
- Luca, B.; Emanuela, S.; Federica, B.; Francesco, G. Metal nanostructures in polymeric matrices for optical detection and removal of heavy metal ions, pesticides and dyes from water. Chemosphere 2024, 362, 142636. [Google Scholar] [CrossRef]
- Motomu, S.; Eri, N.; Masahiko, M. Rejection of heavy metal ions in water by zeolite forward osmosis membrane. Sep. Purif. Technol. 2024, 357, 130163. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Mao, R.; Li, Z.; Cheng, Y.; Niu, Y.; Chen, H. Synthesis of bifunctional silica aerogels for robust and simultaneous removal of Hg(II) and malachite green: Performance and mechanism. Sep. Purif. Technol. 2025, 355, 129773. [Google Scholar] [CrossRef]
- Chen, Z.; Su, X.; Li, K.; Niu, S.; Shen, Z.; Li, X.; Chen, S.; Wu, W. A thiolated TiO2-based degradable superhydrophobic wood for oil–water separation and heavy metal treatment. Sep. Purif. Technol. 2024, 354, 128949. [Google Scholar] [CrossRef]
- Young, G.K. Hybrid method integrating adsorption and chemical precipitation of heavy metal ions on polymeric fiber surfaces for highly efficient water purification. Chemosphere 2024, 363, 142909. [Google Scholar] [CrossRef]
- Wang, Y.; Tamaki, N.; Chen, X.; Xu, Y.L.; He, Y.; Wu, Y.X.; Zhang, J.Q.; Tian, W.; Zhou, M.H.; Wang, S.X. Studies on adsorption properties of magnetic composite prepared by one-pot method for Cd(II), Pb(II), Hg(II), and As(III): Mechanism and practical application in food. J. Hazard. Mater. 2024, 466, 133437. [Google Scholar] [CrossRef]
- Fu, R.; Jiao, R.; Cao, X.; Zhang, H.; Chen, Y.; Sun, H.; Zhu, Z.; Li, J.; Li, A. Capture of volatile iodine by novel conjugated microporous polymers hollow spheres containing N, S electro-rich groups. Surf. Interfaces 2024, 46, 104025. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Chen, R.; Jiao, Y.; Zhao, K.; Liu, Y.; Zhu, G. Carbonized polymer dots-based molecular imprinting: An adsorbent with enhanced selectivity for highly efficient recognition and removal of ceftiofur sodium from complex samples. J. Hazard. Mater. 2024, 473, 134637. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Jiang, J.; Wei, S.; Huang, C.; Chen, D.; Zhu, B.; Zhang, S. Introducing sulfonic acid polymers into MOF nanochannels for ultra-high Ba2+ adsorption capacity and proton conductivity. Sep. Purif. Technol. 2024, 343, 127133. [Google Scholar] [CrossRef]
- Yuan, L.; Guo, H.; Li, Q.; Zhang, H.; Xu, M.; Zhang, W.; Zhang, Y.; Hua, M.; Lv, L.; Pan, B. Machine-Learning-Assisted Material Discovery of Pyridine-Based Polymers for Efficient Removal of ReO4–. Environ. Sci. Technol. 2024, 58, 15298. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, L.; Li, X.; Chen, Z.; Hu, X.; Zi, F. Constructing a cationic pyridine for the highly selective and efficient recovery of gold from waste printed circuit boards. Chem. Eng. J. 2024, 483, 149325. [Google Scholar] [CrossRef]
- Xu, C.; Qu, R.; Li, S.; Sun, C.; Zhang, Y.; Gao, J.; Niu, Y.; Ma, Q.; Song, X.; Wang, S.; et al. Preparation, Characterization, and Rapid Adsorption of Hg2+ on Nanoscale Aramid-based Adsorbent. J. Polym. Environ. 2016, 24, 206. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Lv, Y.; Xu, X.; Zhu, C.; Liu, F.; Li, A. Impactful modulation of micro-structures of acid-resistant picolylamine-based chelate resins for efficient separation of heavy metal cations from strongly acidic media. Chem. Eng. J. 2021, 420, 129684. [Google Scholar] [CrossRef]
- Zou, B.; Zhang, S.; Sun, P.; Zhao, Q.; Zhang, W.; Zhang, X.; Ran, L.; Zhou, L.; Ye, Z. Synthesis of a novel Poly-chloromethyl styrene chelating resin containing Tri-pyridine aniline groups and its efficient adsorption of heavy metal ions and catalytic degradation of bisphenol A. Sep. Purif. Technol. 2021, 275, 119234. [Google Scholar] [CrossRef]
- Sebastian, B.; Pepijn, S.; Kim, R.; Saumey, J.; Renee, K.; Christian, M.; Mahiar, M.; Hamedi, E.Z.; Anna, H. In Situ Functionalization of Polar Polythiophene-Based Organic Electrochemical Transistor to Interface In Vitro Models. ACS Appl. Mater. Interfaces 2024, 27, 54292. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Y.; Zhang, Z.; Huang, M.; Wang, Y.; Gao, J.; Xiong, Y. A green synthesis method of a mussel-inspired polyphenol-functionalized silica-based material and its highly efficient adsorption of gallium. Sep. Purif. Technol. 2024, 349, 127670. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y. Uptake of Fe(III), Ag(I), Ni(II) and Cu(II) by salicylic acid-type chelating resin prepared via surface-initiated atom transfer radical polymerization. RSC Adv. 2016, 6, 69370. [Google Scholar] [CrossRef]
- Li, X.; Jia, Z.; Tan, H.W.; Yang, Y.; Hou, L.A. Enhanced simultaneous adsorption and detection of mercury (II) using functionalized metal—Organic framework with defect structures. Sep. Purif. Technol. 2024, 354, 129110. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Wang, J.; Zhang, D.; Huang, J. Thiophene-based porphyrin polymers for Mercury (II) efficient removal in aqueous solution. J. Colloid Interface Sci. 2023, 653, 405. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.A.; Tawfik, A.S.; Youcef, M.; Thomas, F.G.; Othman, C.S.A.H. Synthesis of a new thiophenol-thiophene polymer for the removal of mercury from wastewater and liquid hydrocarbons. J. Colloid Interface Sci. 2021, 582, 428–438. [Google Scholar] [CrossRef]
- Othman, C.S.A.H.; Shaikh, A.A. Removal of heavy metal ions using a novel cross-linked polyzwitterionic phosphonate. Sep. Purif. Technol. 2012, 98, 94–101. [Google Scholar] [CrossRef]
- Chen, J.; Seko, N. Cleavage of the Graft Bonds in PVDF–g–St Films by Boiling Xylene Extraction and the Determination of the Molecular Weight of the Graft Chains. Polymers 2019, 11, 1098. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Y.; Zhao, M.; Wang, S.; Zhang, L. Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions. J. Hazard. Mater. 2021, 413, 125278. [Google Scholar] [CrossRef]
- Abdullah, N.; Mohd, F.A.; Jun, H.S. Recovery of waste cooking palm oil as a crosslinker for inverse vulcanized adsorbent to remove iron (Fe3+) ions. J. Environ. Chem. Eng. 2024, 12, 111853. [Google Scholar] [CrossRef]
- Lou, X.; Tang, D.; Chen, X.; Mo, L.; Li, Y.; Ye, C.; Chen, J.; Qiu, T. Ketone-based conjugated microporous poly(aniline)s for the ultradeep separation of heavy metal ions. Chem. Eng. Sci. 2024, 301, 120706. [Google Scholar] [CrossRef]
Polymer | Mn × 10−3 | Mw × 10−3 | PDI |
---|---|---|---|
TOC | 16.42 | 27.68 | 1.69 |
Eluents | Recovery (%) | |
---|---|---|
Pb (II) | Cu (II) | |
0.50 mol/L HNO3 | 78.95 | 99.61 |
1.00 mol/L HNO3 | 86.56 | 99.58 |
0.50 mol/L H2SO4 | 80.35 | 88.23 |
1.00 mol/L H2SO4 | 90.23 | 90.51 |
0.50 mol/L HCl | 93.51 | 87.15 |
1.00 mol/L HCl | 99.04 | 92.53 |
Metal Ions | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
Qmax (mg/g) | b (L/mg) | R2 | KF | n | R2 | |
Pb(II) | 89.68 | 0.4503 | 0.6796 | 34.762 | 5.32 | 0.9912 |
Cu(II) | 70.52 | 0.4079 | 0.8217 | 23.562 | 3.75 | 0.9851 |
Metal Ions | Pseudo-First-Order Kinetic | Pseudo-Second-Order Kinetic | ||||
---|---|---|---|---|---|---|
Qmax (mg·g−1) | K1 (min−1) | R2 | Qmax (mg·g−1) | K2 (g·mg−1·min−1) | R2 | |
Pb(II) | 61.61 | 0.2165 | 0.8924 | 125.27 | 0.01657 | 0.9879 |
Cu(II) | 69.57 | 0.6321 | 0.6952 | 98.75 | 0.00628 | 0.9827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zhou, W. Synthesis of a Novel Polymer Adsorbent and Its Adsorption of Pb (II) and Cu (II) Ions in Water. Processes 2024, 12, 2901. https://doi.org/10.3390/pr12122901
Chen D, Zhou W. Synthesis of a Novel Polymer Adsorbent and Its Adsorption of Pb (II) and Cu (II) Ions in Water. Processes. 2024; 12(12):2901. https://doi.org/10.3390/pr12122901
Chicago/Turabian StyleChen, Dun, and Wanyong Zhou. 2024. "Synthesis of a Novel Polymer Adsorbent and Its Adsorption of Pb (II) and Cu (II) Ions in Water" Processes 12, no. 12: 2901. https://doi.org/10.3390/pr12122901
APA StyleChen, D., & Zhou, W. (2024). Synthesis of a Novel Polymer Adsorbent and Its Adsorption of Pb (II) and Cu (II) Ions in Water. Processes, 12(12), 2901. https://doi.org/10.3390/pr12122901