Functional Sulfur-Doped Biocarbon for Hydrogen Storage: Development of Nanomaterials for Energy Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Biocarbon
2.2. Physicochemical Characterization of Biocarbon
2.3. Hydrogen Uptake Measurements
3. Results and Discussion
3.1. Specific Surface Area and CHNS Elemental Analysis
3.2. X-Ray Diffraction Analysis
3.3. Raman Analysis
3.4. XPS Analysis
3.5. Morphology Studies
3.6. Hydrogen Storage Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klopčič, N.; Grimmer, I.; Winkler, F.; Sartory, M.; Trattner, A. A Review on Metal Hydride Materials for Hydrogen Storage. J. Energy Storage 2023, 72, 108456. [Google Scholar] [CrossRef]
- Bosu, S.; Natarajan, R. Recent Advancements in Hydrogen Storage—Comparative Review on Methods, Operating Conditions and Challenges. Int. J. Hydrogen Energy 2024, 52, 352–370. [Google Scholar] [CrossRef]
- Department of Energy DOE, Technical Targets for Onboard Hydrogen Storage. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 1 January 2024).
- Ströbel, R.; Garche, J.; Moseley, P.T.; Jörissen, L.; Wolf, G. Hydrogen Storage by Carbon Materials. J. Power Sources 2006, 159, 781–801. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Vivekanandhan, S.; Das, O.; Romero Millán, L.M.; Klinghoffer, N.B.; Nzihou, A.; Misra, M. Biocarbon materials. Nat. Rev. Methods Primers 2024, 4, 19. [Google Scholar] [CrossRef]
- Shah, S.S. Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy. Batteries 2024, 10, 168. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A.J.B.R. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, 570. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L.; Lugato, E. The Application of Biochar in the EU: Challenges and Opportunities. Agronomy 2013, 3, 462–473. [Google Scholar] [CrossRef]
- Lopresto, C.G.; Paletta, R.; Filippelli, P.; Galluccio, L.; de la Rosa, C.; Amaro, E.; Jáuregui-Haza, U.; de Frias, J.A. Sargassum Invasion in the Caribbean: An Opportunity for Coastal Communities to Produce Bioenergy Based on Biorefinery—An Overview. Waste Biomass Valorization 2022, 13, 2769–2793. [Google Scholar] [CrossRef]
- Yang, P.; Zheng, D.; Zhu, P.; Jiang, F.; Bi, X. Biocarbon with Large Specific Surface Area and Tunable Pore Structure from Binary Molten Salt Templating for Supercapacitor Applications. Chem. Eng. J. 2023, 472, 144785. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, H.; Qian, J.; Yu, M.; Hu, T.; Lassi, U.; Chen, Z.; Wu, Z. Biocarbon-Directed Vertical δ-MnO2 Nanoflakes for Boosting Lithium-Ion Diffusion Kinetics. Mater. Today Chem. 2022, 26, 101023. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Y.; Luo, L.; Wu, X.; Li, Z.; Fan, M.; Zhao, W. Preparation and Characterization of Heteroatom Self-Doped Activated Biocarbons as Hydrogen Storage and Supercapacitor Electrode Materials. Electrochim. Acta 2019, 35, 134941. [Google Scholar] [CrossRef]
- Zhao, W.; Luo, L.; Chen, T.; Li, Z.; Zhang, Z.; Wang, H.; Rao, J.; Feo, L.; Fan, M. Synthesis and Characterization of Pt-N-Doped Activated Biocarbon Composites for Hydrogen Storage. Compos. B Eng. 2019, 161, 464–472. [Google Scholar] [CrossRef]
- Basinas, P.; Rusín, J.; Chamrádová, K.; Kaldis, S.P. Pyrolysis of the Anaerobic Digestion Solid By-Product: Characterization of Digestate Decomposition and Screening of the Biochar Use as Soil Amendment and as Additive in Anaerobic Digestion. Energy Convers. Manag. 2023, 277, 116658. [Google Scholar] [CrossRef]
- Kamali, M.; Jahaninafard, D.; Mostafaie, A.; Davarazar, M.; Gomes, A.P.D.; Tarelho, L.A.; Dewil, R.; Aminabhavi, T.M. Scientometric Analysis and Scientific Trends on Biochar Application as Soil Amendment. Chem. Eng. J. 2020, 395, 125128. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, R.; Liu, Q.; Kong, G.; Lei, H.; Ruan, R.; Han, L. Enhancing the Activity of Zn, Fe, and Ni-Embedded Microporous Biocarbon: Towards Efficiently Catalytic. Energy Convers. Manag. X 2020, 13, 100176. [Google Scholar]
- Xie, Z.; Jin, Q.; Su, G.; Lu, W. A Review of Hydrogen Storage and Transportation: Progresses and Challenges. Energies 2024, 17, 4070. [Google Scholar] [CrossRef]
- Kunowsky, M.; Marco-Lozar, J.P.; Oya, A.; Linares-Solano, A. Hydrogen Storage in CO2-Activated Amorphous Nanofibers and Their Monoliths. Carbon N. Y. 2012, 50, 1407–1416. [Google Scholar] [CrossRef]
- Lazzarini, A.; Marino, A.; Colaiezzi, R.; De Luca, O.; Conte, G.; Policicchio, A.; Aloise, A.; Crucianelli, M. Boronation of Biomass-Derived Materials for Hydrogen Storage. Compounds 2023, 3, 244–279. [Google Scholar] [CrossRef]
- Rimza, T.; Saha, S.; Dhand, C.; Dwivedi, N.; Patel, S.S.; Singh, S.; Kumar, P. Carbon-Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. ChemSusChem 2022, 15, e202200281. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Bandosz, T.J.; Ren, T.-Z. Porous Carbon Modified with Sulfur in Energy Related Applications. Carbon N. Y. 2017, 118, 561–577. [Google Scholar] [CrossRef]
- Briceño, J.; Rosas, D.; Alonso-Lemus, I.L.; Barbosa, R.; Escobar, B. Green Synthesis of N-Doped MWCNTs via Simple Modification of CVD Technique and Evaluation of Its Viability as an Electrode in AEMFC. J. Anal. Appl. Pyrolysis 2023, 174, 106082. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, S.; He, S.; Wu, C. Direct Air Capture of CO2 by KOH-Activated Bamboo Biochar. J. Energy Inst. 2022, 105, 399–405. [Google Scholar] [CrossRef]
- Ma, C.; Lu, T.; Shao, J.; Huang, J.; Hu, X.; Wang, L. Biomass Derived Nitrogen and Sulfur Co-Doped Porous Carbons for Efficient. Sep. Purif. Technol. 2022, 281, 119899. [Google Scholar] [CrossRef]
- Daniel, G.; Mazzucato, M.; Brandiele, R.; De Lazzari, L.; Badocco, D.; Pastore, P.; Kosmala, T.; Granozzi, G.; Durante, C. Sulfur Doping versus Hierarchical Pore Structure: The Dominating Effect on the Fe–N–C Site Density, Activity, and Selectivity in Oxygen Reduction Reaction Electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 42693–42705. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Walker, G.S.; Grant, D.M.; Mokaya, R. Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping. J. Am. Chem. Soc 2009, 131, 16493–16499. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Qu, X.; Zhang, X.; Dong, L.; Yang, Y.; Lee, D.; Cao, Q.V.; Wu, Q.; Lei, T. Valorization of Biomass Furfural Residue: Nitrogen-Doped Porous Carbon towards Electrocatalytic Reaction. Ind. Crops Prod. 2023, 193, 116251. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patra, B.R.; Podder, J.; Dalai, A.K. Synthesis of Biochar From Lignocellulosic Biomass for Diverse Industrial Applications and Energy Harvesting: Effects of Pyrolysis Conditions on the Physicochemical Properties of Biochar. Front. Mater. 2022, 9, 870184. [Google Scholar] [CrossRef]
- Wang, F.; Yu, X.; Ge, M.; Wu, S.; Guan, J.; Tang, J.; Wu, X.; Ritchie, R.O. Facile self- assembly synthesis of γ-Fe2O3/graphene oxide for enhanced photo-Fenton reaction. Environ. Pollut. 2019, 248, 229–237. [Google Scholar] [CrossRef]
- Ma, L.L.; Liu, W.J.; Hu, X.; Lam, P.K.; Zeng, J.R.; Yu, H.Q. Ionothermal Carbonization of Biomass to Construct Sp2/Sp3 Carbon Interface in N-Doped Biochar as Efficient Oxygen Reduction Electrocatalysts. Chem. Eng. J. 2020, 400, 125969. [Google Scholar] [CrossRef]
- Picard, M.; Thakur, S.; Misra, M.; Mielewski, D.F.; Mohanty, A.K. Biocarbon from Peanut Hulls and Their Green Composites with Biobased Poly (Trimethylene Terephthalate)(PTT). Sci. Rep. 2020, 10, 3310. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Xiao, F.; Wu, Y.; Yang, X.; Li, N.; Wang, H.; Jia, J. Covalent Encapsulation of Sulfur in a Graphene/N-Doped Carbon Host for Enhanced Sodium-Sulfur Batteries. Chem. Eng. J. 2022, 443, 136257. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report. Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Elyasi, S.; Saha, S.; Hameed, N.; Mahon, P.J.; Juodkazis, S.; Salim, N. Emerging Trends in Biomass-Derived Porous Carbon Materials for Hydrogen Storage. Mater. Today Sustain. 2024, 21, 100320. [Google Scholar] [CrossRef]
- Zhao, W.; Fierro, V.; Zlotea, C.; Aylon, E.; Izquierdo, M.T.; Latroche, M.; Celzard, A. Optimization of Activated Carbons for Hydrogen Storage. Int. J. Hydrogen Energy 2011, 36, 11746–11751. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) | Average Pore Size (nm) | Pore Volume (cm3 g−1) | C (wt%) | H (wt%) | N (wt%) | S (wt%) |
---|---|---|---|---|---|---|---|
SKTP | 1670 | 1.904 | 0.795 | 64.04 | 3.67 | ND | 0.85 |
SSKTP | 2377 | 2.519 | 1.078 | 61.96 | 1.13 | ND | 17.45 |
Sample | Analysis Elemental CHNS (% wt.) | XPS | |||||
---|---|---|---|---|---|---|---|
Chemical Composition XPS (% at.) | Sulfur Relative Content (% at.) and Binding Energy (eV) | ||||||
C | S | C1s | S 2p | -C-S-C- | -C-SOX-C- | ||
S 2p3/2 | S 2p1/2 | ||||||
SKTP | 64.04 | 0.85 | 85.61 | 0.64 | 46.75 (163.7) | 29.10 (164.9) | 24.15 (168.9) |
SSKTP | 61.96 | 17.45 | 68.93 | 20.16 | 43.84 (163.7) | 21.92 (165.0) | 34.23 (168.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosas, D.; Escobar, B.; Suarez-Alcantara, K.; Pacheco, C.; Barbosa, R. Functional Sulfur-Doped Biocarbon for Hydrogen Storage: Development of Nanomaterials for Energy Applications. Processes 2024, 12, 2715. https://doi.org/10.3390/pr12122715
Rosas D, Escobar B, Suarez-Alcantara K, Pacheco C, Barbosa R. Functional Sulfur-Doped Biocarbon for Hydrogen Storage: Development of Nanomaterials for Energy Applications. Processes. 2024; 12(12):2715. https://doi.org/10.3390/pr12122715
Chicago/Turabian StyleRosas, David, B. Escobar, Karina Suarez-Alcantara, Carlos Pacheco, and Romeli Barbosa. 2024. "Functional Sulfur-Doped Biocarbon for Hydrogen Storage: Development of Nanomaterials for Energy Applications" Processes 12, no. 12: 2715. https://doi.org/10.3390/pr12122715
APA StyleRosas, D., Escobar, B., Suarez-Alcantara, K., Pacheco, C., & Barbosa, R. (2024). Functional Sulfur-Doped Biocarbon for Hydrogen Storage: Development of Nanomaterials for Energy Applications. Processes, 12(12), 2715. https://doi.org/10.3390/pr12122715