A Shortened Process of Artificial Graphite Manufacturing for Anode Materials in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Material Characterization
2.3. Electrochemical Performance
2.3.1. Powder Conductivity Measurement
2.3.2. Cell Preparation and Evaluation
3. Results and Discussion
3.1. Physical Parameter Comparisons of the PAG-C and PAG-S Process
3.2. Raman Spectroscopy and 3D Mapping Results
3.3. Electrochemical Testing Result
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Andre, D.; Hain, H.; Lamp, P.; Maglia, F.; Stiaszny, B. Future high-energy density anode materials from an automotive ap-plication perspective. J. Mater. Chem. A 2017, 5, 17174–17198. [Google Scholar] [CrossRef]
- Zanini, M.; Basu, S.; Fischer, J.E. Alternate synthesis and reflectivity spectrum of stage 1 lithium-graphite intercalation compound. Carbon 1978, 16, 211–212. [Google Scholar] [CrossRef]
- Markevich, E.; Levi, M.D.; Aurbach, D. Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III). Mater. Res. Bull. 1979, 14, 857–864. [Google Scholar]
- Markevich, E.; Levi, M.D.; Aurbach, D. Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes. J. Electroanal. Chem. 2005, 580, 231–237. [Google Scholar] [CrossRef]
- Tsuyoshi, N.; Katsunori, Y. Surface Fluorination and Oxidation of Carbon Materials for Negative Electrode of Lithium Ion Secondary Battery. Tanso 1996, 174, 195–200. [Google Scholar]
- Nitin, A.K.; Joachim, M. Lithium Storage in Carbon Nanostructures. Adv. Mater. 2009, 21, 2664–2680. [Google Scholar]
- Qi, Y.; Guo, H.; Hector, J.L.G.; Timmons, A. Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation. J. Electrochem. Soc. 2010, 157, A558. [Google Scholar] [CrossRef]
- Hatchard, T.D. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electroanal. Chem. 2004, 151, A838–A842. [Google Scholar] [CrossRef]
- Ding, N.; Xu, J.; Yao, Y.X.; Wegner, G.; Fang, X.; Chen, C.H.; Lieberwirth, I. Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ion. 2009, 180, 222–2259. [Google Scholar] [CrossRef]
- Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes. Mater. Chem. Phys. 2010, 120, 421–425. [Google Scholar] [CrossRef]
- Courtney, I.; Tse, J. Ab initio calculation of the lithium-tin voltage profile. Phys. Rev. B Condens. Matter 1998, 58, 15583–15588. [Google Scholar] [CrossRef]
- Tirado, J.L. Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects. Mater. Sci. Eng. R Rep. 2003, 40, 103–136. [Google Scholar] [CrossRef]
- Xie, J.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Zhao, X.B.; Cao, G.S. Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique. Solid State Ion. 2010, 181, 1611–1615. [Google Scholar] [CrossRef]
- Scharner, S.; Weppner, W.; Schmid-Beurmann, P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J. Electrochem. Soc. 1999, 146, 857–861. [Google Scholar] [CrossRef]
- Wagemaker, M.; Simon, D.R.; Kelder, E.M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Lützenkirchen-Hecht, D.; Frahm, R.; Mulder, F.M. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv. Mater. 2006, 18, 3169–3173. [Google Scholar] [CrossRef]
- Takami, N.; Hoshina, K.; Inagaki, H. Lithium diffusion in Li4/3Ti5/3O4 particles during insertion and extraction. J. Electrochem. Soc. 2011, 158, A725–A730. [Google Scholar] [CrossRef]
- Wunde, F.; Berkemeier, F.; Schmitz, G. Lithium diffusion in sputter-deposited Li4Ti5O12 thin films. J. Power Sources 2012, 215, 109–115. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, X.; Yang, M.; Qi, Y. Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Q.; Uchaker, E.; Cao, X.; Cao, G. Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm 2016, 18, 2532–2540. [Google Scholar] [CrossRef]
- Park, T.-H.; Yeo, J.-S.; Seo, M.-H.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochim. Acta 2013, 93, 236–240. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, Y.; Li, J.; Song, Y.; Shi, J.; Guo, Q.; Liu, L. Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries. Carbon 2013, 64, 553–556. [Google Scholar] [CrossRef]
- Lim, S.-Y. Amorphous-silicon nanoshell on artificial graphite composite as the anode for lithium-ion battery. Solid State Sci. 2019, 93, 24–30. [Google Scholar] [CrossRef]
- Li, H.; Li, W. Improving cycle life and rate capability of artificial graphite anode for lithium-ion batteries by agglomeration. Mater. Lett. 2022, 318, 132227. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, H.; Oh, S.M. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries. J. Power Sources 2001, 94, 68–73. [Google Scholar] [CrossRef]
- Fujii, K.; Yasuda, E.; Tanabe, Y. Dynamic mechanical properties of polycrystalline graphites and a 2D-C/C composite by plate impact. Int. J. Impact Eng. 2001, 25, 473–491. [Google Scholar] [CrossRef]
- Wang, L.; Du, C.; Li, Z.; Han, Y.; Feng, N.; Yang, J. Catalytic graphitization of coke and electrochemical performances of coke-based graphite. J. Alloys Compd. 2023, 960, 170949. [Google Scholar] [CrossRef]
- Seino, K.; Golman, B.; Shinohara, K.; Ohzeki, K. Variation of packing structure of cast film with preparation conditions and particle properties. Tanso 2005, 2005, 2–7. [Google Scholar] [CrossRef]
- Liu, H.; Gu, S.; Cao, H.; Li, X.; Li, Y. A dense packing structure constructed by flake and spherical graphite: Simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites. Compos. Commun. 2020, 19, 25–29. [Google Scholar] [CrossRef]
- Ulusoy, U.; Burat, F.; Bayar, G.; Mojtahedi, B.; Güven, G. Modeling the change of the sphericity feature of graphite particles ground in a ball and vibrating disc mill with grinding time. J. Energy Storage 2024, 97, 112814. [Google Scholar] [CrossRef]
- Lee, G.-H.; Yi, H.; Cho, H.-R.; Kim, Y.-J.; Park, S.-M.; Yoon, S.-J.; Seo, D.-J.; Oh, K.; Yeon, J.-M.; Choi Yoon, S.-H.; et al. Design of Continuous Kneading System for Active Anode Material Fabrication Using Retrofitted Assembly of Co-Rotating Screw Extruder. Processes 2023, 11, 2660. [Google Scholar] [CrossRef]
- Han, Y.J.; Kim, J.; Yeo, J.S.; An, J.C.; Hong, I.P.; Nakabayashi, K.; Miyawaki, J.; Jung, J.D.; Yoon, S.H. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch. Carbon 2015, 94, 432–438. [Google Scholar] [CrossRef]
- Dovbeshko, G.; Cherepanov, V.; Boiko, V.; Perederiy, A.; Olenchuk, M.; Negriyko, A.; Posudievsky, O.; Moiseyenko, V.; Romanyuk, V. Raman modes and mapping of graphene nanoparticles on Si and photonic crystal substrates. Opt. Mater. X 2022, 15, 100163. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Wang, Y.; Cui, H.; Zhao, W.; Qiu, L. Miniaturized high-resolution dual 2D MEMS mirror scanning confocal Raman microscopy for topographic and Raman mapping. Measurement 2024, 224, 113807. [Google Scholar] [CrossRef]
- Koutentaki, G.; Krýsa, P.; Trunov, D.; Pekárek, T.; Pišlová, M.; Šoóš, M. 3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles. J. Pharm. Anal. 2023, 13, 276–286. [Google Scholar] [CrossRef]
- He, Q.; Jiang, X.; Xu, J.; Wang, C.; Jiang, M.; Wang, G.; Jiang, L.; Xu, K.; Wang, Y.; Su, S.; et al. Heterogeneous chemical structures of single pulverized coal particles and their evolution during pyrolysis: Insight from micro-Raman mapping technique. Powder Technol. 2023, 420, 118385. [Google Scholar] [CrossRef]
- Han, Y.-J.; Chung, D.; Nakabayashi, K.; Chung, J.-D.; Miyawaki, J.; Yoon, S.-H. Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries. Electrochim. Acta 2016, 213, 432–438. [Google Scholar] [CrossRef]
- Ralph, N.N.; Ma, W.; Tsujimoto, S.; Inoue, Y.; Yokoyama, Y.; Kondo, Y.; Miyazaki, K.; Miyahara, Y.; Fukutsuka, T.; Lin, S.-K.; et al. Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries. Electrochim. Acta 2021, 379, 138175. [Google Scholar]
- Li, L.; Dan Zhang, D.; Deng, J.; Gou, Y.; Fang, J.; Cui, H.; Zhao, Y.; Cao, M. Carbon-based materials for fast charging lithium-ion batteries. Carbon 2021, 183, 721–734. [Google Scholar] [CrossRef]
Pitch Code | Source | (1) SP (°C) | (2) QI (%) | (3) FC (%) | Ash (%) | Sulfur (%) |
---|---|---|---|---|---|---|
ZL250 [34] | Petroleum | 250 | 0.5 | 68 | 0.02 | 0.01 |
BX95KS | Coal tar | 110 | 6 | 63 | 0.32 | 0.70 |
Sample Code | Physical Parameters | ||||
---|---|---|---|---|---|
Mean Particle Size (D50, μm) | Span | Specific Surface Area (m2/g) | d002 (nm) | Tap Density (g/cc) | |
PAG-C | 15.6 | 1.10 | 1.18 | 0.3358 | 0.88 |
PAG-S | 13.8 | 0.91 | 1.16 | 0.3358 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-H.; Yi, H.; Kim, Y.-J.; Lee, J.B.; An, J.-C.; Park, S.-M.; Oh, K.; Yoon, S.-H.; Park, J.-I. A Shortened Process of Artificial Graphite Manufacturing for Anode Materials in Lithium-Ion Batteries. Processes 2024, 12, 2709. https://doi.org/10.3390/pr12122709
Lee G-H, Yi H, Kim Y-J, Lee JB, An J-C, Park S-M, Oh K, Yoon S-H, Park J-I. A Shortened Process of Artificial Graphite Manufacturing for Anode Materials in Lithium-Ion Batteries. Processes. 2024; 12(12):2709. https://doi.org/10.3390/pr12122709
Chicago/Turabian StyleLee, Gang-Ho, Hyeonseok Yi, Yu-Jin Kim, Jong Beom Lee, Jung-Chul An, Sei-Min Park, Kyeongseok Oh, Seong-Ho Yoon, and Joo-Il Park. 2024. "A Shortened Process of Artificial Graphite Manufacturing for Anode Materials in Lithium-Ion Batteries" Processes 12, no. 12: 2709. https://doi.org/10.3390/pr12122709
APA StyleLee, G.-H., Yi, H., Kim, Y.-J., Lee, J. B., An, J.-C., Park, S.-M., Oh, K., Yoon, S.-H., & Park, J.-I. (2024). A Shortened Process of Artificial Graphite Manufacturing for Anode Materials in Lithium-Ion Batteries. Processes, 12(12), 2709. https://doi.org/10.3390/pr12122709