A Machine Vision-Based Method of Impurity Detection for Rapeseed Harvesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Real-Time Detection System for Impurity Rate of Rapeseed Harvesters
2.2. Design of Algorithm for Detecting Impurity Rate in Rapeseed
2.2.1. Image Preprocessing Algorithm
2.2.2. Analysis of Image Features of Rapeseed
2.2.3. Segmentation Algorithm for Rapeseed and Impurity
2.2.4. Calculation Method of Impurity Rate in Rapeseed
2.2.5. Software Design of Impurity Detection System
2.3. Field Test
3. Result and Discussion
3.1. Pixel Density Calibration
3.2. Result of Impurity Detection
3.3. Field Test
3.4. Discussion of Segmentation Algorithm
4. Conclusions
- (1)
- In this research, a rapeseed image acquisition device was designed to avoid the interference of dust in the grain bin on the camera and restrict the rapeseed material to flow uniformly in a single-layer layout, thereby reducing the obstruction between materials. The device was equipped with a light source to solve the problem of large changes in natural lighting and an image processing module to process real-time image data and calculate the rapeseed impurity rate.
- (2)
- Rapeseed images were binarized by setting the color and shape features of rapeseed and impurity in the image in HSV color space. The impurity components in the image were distinguished from the background using morphological processing methods. By manually calibrating the pixel count and the mass of rapeseed and impurity components, the fitting relationship between the mass and the pixel number of rapeseed and impurity was calculated separately.
- (3)
- The hardware and software of the monitoring system were integrated into the rapeseed harvester and tested in the field environment. Experimental results have shown that the impurity detection system designed in this study has an accuracy of 86.36% in detecting the impurity rate of rapeseed compared to manual detection, which can be used as an effective means for evaluating the performance of rapeseed harvesters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, Y.; Liao, Q.X.; Lin, J.X.; Han, J.X.; Wan, X.Y. Development of guide rail hitch device connecting combine harvester and rapeseed direct seeding machine. Trans. Chin. Soc. Agric. Mach. 2024, 55, 111–123. [Google Scholar] [CrossRef]
- Ma, Z.; Li, B.H.; Song, Z.Q.; Liu, Y.B.; Pan, Y. Lightweight design and test of cleaning sieve for combine harvester. Trans. Chin. Soc. Agric. Mach. 2024, 14, 1–13. Available online: https://link.cnki.net/urlid/11.1964.S.20240910.1647.015 (accessed on 1 November 2024).
- Wan, X.Y.; Yuan, J.C.; Liao, Q.X.; Zhang, M.; Guan, Z.H.; Li, H.T. Design and experiment of cyclone separation cleaning device with raised cylinder disturbing airflow field for rapeseed combine harvest. Trans. Chin. Soc. Agric. Mach. 2023, 54, 159–172. [Google Scholar] [CrossRef]
- Jin, C.Q.; Liu, S.K.; Chen, M.; Yang, T.X.; Xu, J.S. Online quality detection of machine-harvested soybean based on improved U-Net network. Trans. Chin. Soc. Agric. Eng. 2022, 38, 70–80. [Google Scholar] [CrossRef]
- Wang, J.W.; Tang, T.Y.; Tang, H.; Xu, C.S.; Zhou, W.Q.; Wang, Q. Design and experiment of on-line detection device for capacitive paddy rice moisture content of combine harvester. Trans. Chin. Soc. Agric. Mach. 2021, 52, 143–152. [Google Scholar] [CrossRef]
- Nie, S.; Ma, S.J.; Peng, Y.K.; Wang, W.; Li, Y.Y. Research progress of rapid optical detection technology and equipment for grain quality. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Huang, C.H.; Lan, H.J. Flower core recognition and location of pineapple flower inducing robot based on RGBD. Control Theory Appl. 2024, 41, 1–10. Available online: https://link.cnki.net/urlid/44.1240.TP.20240830.1259.018 (accessed on 1 November 2024).
- Guan, Z.H.; Li, H.T.; Chen, X.; Mu, S.L.; Jiang, T.; Zhang, M.; Wu, C.Y. Development of impurity-detection system for tracked rice combine harvester based on DEM and Mask R-CNN. Sensors 2022, 22, 9550. [Google Scholar] [CrossRef]
- Chen, M.; Ni, Y.L.; Jin, C.Q.; Xu, J.S.; Zhang, G.Y. Online monitoring method of mechanized soybean harvest quality based on machine vision. Trans. Chin. Soc. Agric. Mach. 2021, 52, 91–98. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S.; Li, Y.M.; Zhu, L.J.; Xia, H.; Zhu, Y.H. Research on online identification system of rice broken impurities in combine harvester. J. Chin. Agric. Mech. 2021, 42, 137–144. [Google Scholar] [CrossRef]
- Zhang, W.R.; Du, Y.F.; Li, X.Y.; Liu, L.; Wang, L.Z.; Wu, Z.K. Research on online detection method of corn kernel quality based on YOLOv8n. Trans. Chin. Soc. Agric. Mach. 2024, 55, 253–265. Available online: https://link.cnki.net/urlid/11.1964.s.20240613.1459.007 (accessed on 15 November 2024).
- Geng, D.Y.; Wang, Q.H.; Li, H.B.; He, Q.H.; Yue, D.; Ma, J.; Wang, Y.N.; Xu, H.G. Online detection technology for broken corn kernels based on deep learning. Trans. Chin. Soc. Agric. Eng. 2023, 39, 270–278. [Google Scholar] [CrossRef]
- Li, Z.J.; Hu, J.Y.; Zhang, J.; Zhu, C.H.; Li, S.L.; Liu, B.J.; Zhang, H.M. Design and test of corn kernel breakage rate detection device based on improved yolov8. J. Henan Agric. Univ. 2024, 1–13. [Google Scholar] [CrossRef]
- Liu, S.K.; Jin, C.Q.; Chen, M.; Yang, T.X.; Xu, J.S. Online detection system for crushed rate and impurity rate of mechanized soybean based on Deeplabv3+. J. Chin. Agric. Mech. 2023, 44, 170–175. [Google Scholar] [CrossRef]
- Chen, M.; Jin, C.Q.; Mo, G.W.; Liu, S.K.; Xu, J.S. Online detection method of impurity rate in wheat mechanized harvesting based on improved u-net model. Trans. Chin. Soc. Agric. Mach. 2023, 54, 73–82. [Google Scholar] [CrossRef]
- Liu, Q.H.; Yang, X.Y.; Jie, H.; Sun, S.C.; Liang, Z.W. Rice grain detection based on YOLO v7 fusing of GhostNetV2. Trans. Chin. Soc. Agric. Mach. 2023, 54, 253–260+299. [Google Scholar] [CrossRef]
- Chen, X.; Guan, Z.H.; Li, H.T.; Mu, S.L.; Zhang, M.; Wu, C.Y. Design and experiment of impurity detection system for rapeseed combine harvester. J. Chin. Agric. Mech. 2022, 43, 127–134. [Google Scholar] [CrossRef]
- Lin, Y.X.; Shen, Y.; Li, G.L. Research on wheat impurity identification based on improved InceptionV3 algorithm. J. Chin. Agric. Mech. 2024, 45, 108–116. [Google Scholar] [CrossRef]
- Lian, Y.; Gong, S.J.; Sun, M.Y. Sampling box with damper for grain condition monitoring device of combine harvester. Chin. Hydraul. Pneum. 2022, 46, 71–78. [Google Scholar] [CrossRef]
- An, X.F.; Dai, J.Y.; Luo, C.H.; Meng, Z.J.; Li, L.W.; Zhang, A.Q. Development of grain moisture detection device on combine harvester based on dielectric property. Trans. Chin. Soc. Agric. Mach. 2022, 53, 185–190. [Google Scholar] [CrossRef]
- Liu, L.; Du, Y.F.; Chen, D.; Li, Y.B.; Li, X.Y.; Zhao, X.N.; Li, G.R.; Mao, E.N. Impurity monitoring study for corn kernel harvesting based on machine vision and CPU-Net. Comput. Electron. Agric. 2022, 202, 107436. [Google Scholar] [CrossRef]
- Chen, J.; Gu, Y.; Lian, Y.; Han, M.N. Online recognition method of impurities and broken paddy grains based on machine vision. Trans. Chin. Soc. Agric. Eng. 2018, 34, 187–194. [Google Scholar] [CrossRef]
- Tao, Z.S.; Gong, B.G.; Li, Q.P.; Zhao, R.; Wu, Y.; Wu, H. Wheat image inpainting based on residual networks and feature fusion. Trans. Chin. Soc. Agric. Mach. 2023, 54, 318–327. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, J.H.; Li, Y.P.; Liu, P.Y. Research on image restoration algorithm of uneven illumination in coalmine based on HSV space. Coal Sci. Technol. 2024, 1–9. Available online: https://link.cnki.net/urlid/11.2402.TD.20240528.1605.002 (accessed on 1 November 2024).
- He, L.; Yi, Z.H.; Xie, Y.F.; Chen, C.Y.; Lu, M. Fast enhancement method for low light images guided by Retinex prior. Acta Autom. Sin. 2024, 50, 1035–1046. [Google Scholar] [CrossRef]
- Liu, B.; Tian, G.L.; Xiao, B.; Ma, J.F.; Bi, X.L. Low light image enhancement with adaptive light initialization. J. Electron. Inf. Technol. 2024, 46, 643–651. [Google Scholar] [CrossRef]
- Li, J.P.; Feng, S.; Yang, X.; Li, G.M.; Zhao, D.X.; Yu, F.H.; Xu, T.Y. Unsupervised extraction of rice coverage with incorporating CLAHE-SV enhanced Lab color features. Trans. Chin. Soc. Agric. Eng. 2023, 39, 195–206. [Google Scholar] [CrossRef]
- Gong, Y.; Jie, X.Y. Research on coal mine underground image recognition technology based on homomorphic filtering method. Coal Sci. Technol. 2023, 51, 241–250. [Google Scholar] [CrossRef]
- Qi, D.L.; Han, Y.F.; Zhou, Z.Q.; Yan, Y.F. Review of Defect Detection Technology of Power Equipment Based on Video Images. J. Electron. Inf. Technol. 2022, 44, 3709–3720. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wu, Y.Q.; Liu, J.J. Research progress of vision-based rust defect detection methods for metal fittings in transmission lines. Chin. J. Sci. Inst. 2024, 45, 286–305. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wu, Y.Q. Research Progress of Power Equipment Identification and Thermal Fault Diagnosis Based on Infrared Images. Proceedings CSEE 2024, 1–27. Available online: https://link.cnki.net/urlid/11.2107.TM.20240226.0957.002 (accessed on 1 November 2024).
- Hilali-Jaghdam, I.; Ishak, B.A.; Abdel-Khalek, S.; Jamal, A. Quantum and classical genetic algorithms for multilevel segmentation of medical images: A comparative study. Comput. Comm. 2020, 162, 83–93. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Zhao, L.Y.; Yuan, Y.B.; Yang, J. Research status and the prospect of PCB defect detection algorithm based on machine vision. Chin. J. Sci. Inst. 2022, 43, 1–17. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, S.; Wu, D. Segmentation and location algorithm for oblong holes in robotic automatic assembly. J. Tsinghua Univ. (Sci. Technol.) 2024, 64, 1677–1685. [Google Scholar] [CrossRef]
- Sarkar, K.; Varanasi, K.; Stricker, D. Trained 3D Models for CNN based Object Recognition. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), Porto, Portugal, 27 February–1 March 2017; pp. 130–137. [Google Scholar] [CrossRef]
- Gostimirovic, D.; Xu, D.X.; Liboiron-Ladouceur, O.; Grinberg, Y. Deep Learning-Based Prediction of Fabrication-Process-Induced Structural Variations in Nanophotonic Devices. ACS Photonics 2022, 9, 2623–2633. [Google Scholar] [CrossRef]
- Židek, K.; Lazorík, P.; Pitel’, J.; Hošovský, A. An Automated Training of Deep Learning Networks by 3D Virtual Models for Object Recognition. Symmetry 2019, 11, 496. [Google Scholar] [CrossRef]
- Giakoumoglou, N.; Kalogeropoulou, E.; Klaridopoulos, C.; Pechlivani, E.M.; Christakakis, P.; Markellou, E.; Frangakis, N.; Tzovaras, D. Early detection of Botrytis cinerea symptoms using deep learning multi-spectral image segmentation. Smart Agric. Tech. 2024, 8, 100481. [Google Scholar] [CrossRef]
Component | Impurity | Rapeseed |
---|---|---|
First-order moment of hue | 0.0130~0.0897 | 0.1046~0.3140 |
Second-order moment of hue | 0.0343~0.1289 | 0.1746~0.3680 |
Hu first-order invariant moment | 0.4283~3.4806 | 0.1593~0.3972 |
Hu second-order invariant moment | 0.1495~5.7469 | 0.0001~0.1038 |
Aspect ratio | 1.2621~13.6539 | 1.0000~3.4625 |
Boundary pixels | 313~1859 | 79~540 |
Circularity | 0.0444~0.2913 | 0.3212~ 0.9152 |
Detect Category | Precision (%) | Recall (%) | (%) |
---|---|---|---|
Impurity | 91.58 | 89.47 | 90.51 |
Rapeseed | 85.62 | 84.31 | 84.96 |
Manual Detection | Gross Mass (g) | Net Mass (g) | Impurity Rate (%) |
---|---|---|---|
Sample 1 | 147.0 | 140.8 | 4.22 |
Sample 2 | 202.2 | 192.9 | 4.60 |
Sample 3 | 254.9 | 243.6 | 4.43 |
Sample 4 | 266.2 | 251.9 | 5.37 |
Sample 5 | 338.5 | 325.8 | 3.75 |
Sample 6 | 448.2 | 430.1 | 4.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Guan, Z.; Li, H.; Zhang, M. A Machine Vision-Based Method of Impurity Detection for Rapeseed Harvesters. Processes 2024, 12, 2684. https://doi.org/10.3390/pr12122684
Chen X, Guan Z, Li H, Zhang M. A Machine Vision-Based Method of Impurity Detection for Rapeseed Harvesters. Processes. 2024; 12(12):2684. https://doi.org/10.3390/pr12122684
Chicago/Turabian StyleChen, Xu, Zhuohuai Guan, Haitong Li, and Min Zhang. 2024. "A Machine Vision-Based Method of Impurity Detection for Rapeseed Harvesters" Processes 12, no. 12: 2684. https://doi.org/10.3390/pr12122684
APA StyleChen, X., Guan, Z., Li, H., & Zhang, M. (2024). A Machine Vision-Based Method of Impurity Detection for Rapeseed Harvesters. Processes, 12(12), 2684. https://doi.org/10.3390/pr12122684