The Effect of Ethylene Diamine Tetra(Methylene Phosphonic Acid) Sodium on the Hydration of Tricalcium Silicate at 80 °C
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. C3S Slurry and Sample Preparation
2.3. Isothermal Calorimetry Test of C3S Slurry
2.4. XRD Testing of Hydration Products
2.5. TGA of Hydration Products
2.6. Morphology of Hydration Products
2.7. Compressive Strength
3. Results and Discussion
3.1. C3S Hydration Heat
3.2. Hydration Products of C3S Slurry
3.3. Morphology of C3S Hydration Products
3.4. Compressive Strength of Hardened Cement Pastes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jafariesfad, N.; Geiker, M.R.; Gong, Y.; Skalle, P.; Zhang, Z.; He, J. Cement sheath modification using nanomaterials for long-term zonal isolation of oil wells: Review. J. Pet. Sci. Eng. 2017, 156, 662–672. [Google Scholar] [CrossRef]
- Therond, E.; Bois, A.-P.; Whaley, K.; Murillo, R. Large Scale Testing & Modelling for Cement Zonal Isolation of Water Injection Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [Google Scholar]
- Zhang, J.; Weissinger, E.A.; Peethamparan, S.; Scherer, G.W. Early hydration and setting of oil well cement. Cem. Concr. Res. 2010, 40, 1023–1033. [Google Scholar] [CrossRef]
- API RP 10B-2; Recommended Practice for Testing Well Cements. American Petroleum Institute: Washington, DC, USA, 2013.
- Sun, L.; Pang, X.; Ghabezloo, S.; Wang, H.; Sun, J. Hydration kinetics and strength retrogression mechanism of silica-cement systems in the temperature range of 110 °C–200 °C. Cem. Concr. Res. 2023, 167, 107120. [Google Scholar] [CrossRef]
- Fikeni, K.G.; Pang, X.; Yu, Y.; Xia, X.; Sun, F.; Wang, H.; Lv, K.; Sun, J. An overview of oil well cement retarders and the retardation mechanisms. Geoenergy Sci. Eng. 2024, 241, 213116. [Google Scholar] [CrossRef]
- Nwaichi, P.I.; Ridzuan, N.; Nwaichi, E.O.; Umunnawuike, C.; Agi, A. Recent advances and prospects on retarder application in oilwell cement: A review. Geoenergy Sci. Eng. 2024, 241, 213103. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Yao, X.; Du, J.; Zhai, W.; Guo, S.; Zhou, A. The effect of rutin on the early-age hydration of oil well cement at varying temperatures. Cem. Concr. Compos. 2022, 128, 104438. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Gu, T.; Xu, W.; Zhang, J.; Zhang, G.; Huang, S.; Liu, K.; Cheng, X. Synthesis and evaluation of a new type of oil-well cement temperature-resistant retarder. Constr. Build. Mater. 2021, 302, 124153. [Google Scholar] [CrossRef]
- Guo, S.; Bu, Y.; Lu, Y. Addition of tartaric acid to prevent delayed setting of oil-well cement containing retarder at high temperatures. J. Pet. Sci. Eng. 2019, 172, 269–279. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, J.; Xie, S.; Liu, Z.; Zhu, J.; Xu, M. Synthesis and Evaluation of Highly Inhibitory Oil Well Cement Retarders with Branched-Chain Structures. ACS Omega 2023, 8, 40754–40763. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Geng, C.; Yao, X. Benefits of delayed addition of rutin on the thickening time and compressive strength of oil well cement. Constr. Build. Mater. 2022, 322, 126287. [Google Scholar] [CrossRef]
- Bishop, M.; Bott, S.G.; Barron, A.R. A New Mechanism for Cement Hydration Inhibition: Solid-State Chemistry of Calcium Nitrilotris(methylene)triphosphonate. Chem. Mater. 2003, 15, 3074–3088. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Boul, P.J.; Rasner, D.K.; Lapidus, S.H.; Leao, J.B.; Johnson, K.D.; Thaemlitz, C.J.; Büyüköztürk, O. In situ investigation of phosphonate retarder interaction in oil well cements at elevated temperature and pressure conditions. J. Am. Ceram. Soc. 2020, 103, 6400–6413. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Boontheung, P.; Boul, P.J. Dynamic retarder exchange as a trigger for Portland cement hydration. Cem. Concr. Res. 2014, 63, 20–28. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Yao, X.; Geng, C.; Zou, Y.; Wang, Y. The Effect of Gypsum/Bassanite on the Retardation of Ethylene Diamine Tetra(Methylene Phosphonic Acid) Sodium in Oil Well Cement Slurry. SPE J. 2024, 29, 2901–2907. [Google Scholar] [CrossRef]
- Kipkemboi, B.; Zhao, T.; Miyazawa, S.; Sakai, E.; Nito, N.; Hirao, H. Effect of C3S content of clinker on properties of fly ash cement concrete. Constr. Build. Mater. 2020, 240, 117840. [Google Scholar] [CrossRef]
- Masoero, E.; Thomas, J.J.; Jennings, H.M. A Reaction Zone Hypothesis for the Effects of Particle Size and Water-to-Cement Ratio on the Early Hydration Kinetics of C3S. J. Am. Ceram. Soc. 2014, 97, 967–975. [Google Scholar] [CrossRef]
- Puertas, F.; Goñi, S.; Hernández, M.S.; Varga, C.; Guerrero, A. Comparative study of accelerated decalcification process among C3S, grey and white cement pastes, Cem. Concr. Compos. 2012, 34, 384–391. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Boul, P.J.; Rasner, D.K.; Everett, S.M.; Proffen, T.; Page, K.; Ma, D.; Olds, D.; Thaemlitz, C.J.; Büyüköztürk, O. Retarder effect on hydrating oil well cements investigated using in situ neutron/X-ray pair distribution function analysis. Cem. Concr. Res. 2019, 126, 105920. [Google Scholar] [CrossRef]
- Thomas, J.J.; Jennings, H.M. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cem. Concr. Res. 2006, 36, 30–38. [Google Scholar] [CrossRef]
- Wang, L.; He, Z.; Cai, X. Characterization of pozzolanic reaction and its effect on the C-S-H Gel in fly Ash-cement paste. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 319–324. [Google Scholar] [CrossRef]
- Nalet, C.; Nonat, A. Ionic complexation and adsorption of small organic molecules on calcium silicate hydrate: Relation with their retarding effect on the hydration of C3S. Cem. Concr. Res. 2016, 89, 97–108. [Google Scholar] [CrossRef]
- Ma, W.; Brown, P. No AccessEffect of phosphate additions on the hydration of Portland cement. Adv. Cem. Res. 1994, 6, 1–12. [Google Scholar] [CrossRef]
- Daake, H.; Stephan, D. Adsorption kinetics of retarding admixtures on cement with time controlled addition. Cem. Concr. Res. 2017, 102, 119–126. [Google Scholar] [CrossRef]
Notation | Induction Period | Acceleration Period | Accumulated Heat (J/g) | ||||
---|---|---|---|---|---|---|---|
Duration (h) | Minimum Heat Flow (mW/g) | Begin (h) | Maximum Heat Flow (mW/g) | 24 h | 48 h | 72 h | |
Neat slurry | 1.56 | 1.137 | 3.66 | 12.78 | 164.30 | 192.73 | 204.03 |
0.2% EDTMPS | 4.27 | 0.409 | 9.17 | 4.49 | 141.52 | 180.37 | 197.00 |
0.4% EDTMPS | 18.39 | 0.176 | 30.30 | 1.54 | 25.76 | 103.52 | 161.08 |
Notation | Time | C3S | CH | C-S-H |
---|---|---|---|---|
Neat slurry | 3 h | 88.48 | 3.05 | 8.47 |
8 h | 57.68 | 13.31 | 29.01 | |
1 d | 51.29 | 15.63 | 33.08 | |
3 d | 40.08 | 16.90 | 43.02 | |
0.2% EDTMPS | 3 h | 95.37 | 1.24 | 3.39 |
8 h | 87.46 | 2.58 | 9.96 | |
1 d | 55.64 | 14.06 | 30.30 | |
3 d | 47.93 | 16.04 | 36.03 | |
0.4% EDTMPS | 3 h | 95.56 | 1.60 | 2.84 |
8 h | 94.71 | 1.90 | 3.39 | |
1 d | 87.44 | 3.79 | 8.77 | |
3 d | 50.82 | 15.09 | 34.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Song, W.; Sun, C.; Yu, T.; Zhu, S.; Wang, C.; Yao, X. The Effect of Ethylene Diamine Tetra(Methylene Phosphonic Acid) Sodium on the Hydration of Tricalcium Silicate at 80 °C. Processes 2024, 12, 2414. https://doi.org/10.3390/pr12112414
Zou Y, Song W, Sun C, Yu T, Zhu S, Wang C, Yao X. The Effect of Ethylene Diamine Tetra(Methylene Phosphonic Acid) Sodium on the Hydration of Tricalcium Silicate at 80 °C. Processes. 2024; 12(11):2414. https://doi.org/10.3390/pr12112414
Chicago/Turabian StyleZou, Yiwei, Weikai Song, Chao Sun, Tianshuai Yu, Sijia Zhu, Chunyu Wang, and Xiao Yao. 2024. "The Effect of Ethylene Diamine Tetra(Methylene Phosphonic Acid) Sodium on the Hydration of Tricalcium Silicate at 80 °C" Processes 12, no. 11: 2414. https://doi.org/10.3390/pr12112414
APA StyleZou, Y., Song, W., Sun, C., Yu, T., Zhu, S., Wang, C., & Yao, X. (2024). The Effect of Ethylene Diamine Tetra(Methylene Phosphonic Acid) Sodium on the Hydration of Tricalcium Silicate at 80 °C. Processes, 12(11), 2414. https://doi.org/10.3390/pr12112414