A Second-Order Sliding Mode Voltage Controller with Fast Convergence for a Permanent Magnet Synchronous Generator System
Abstract
:1. Introduction
2. Modelling and PMSG Rectification Systems
2.1. Modelling of PMSG
2.2. Description of the Control System for PMSG
3. Proposed Control Scheme
3.1. Existing Voltage Controller Based on SMC
3.2. Voltage Controllers Based on High-Order Sliding Modes
4. Simulation and Experimental Verification
4.1. Simulation Analysis
4.1.1. Performance Verification of the Proposed Control Scheme
4.1.2. Verification of the Performance for Different Control Schemes
4.2. Simulation Analysis
4.2.1. Experimental Validation of Feasibility
4.2.2. Contrast Experiments with Different Controllers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Yan, H.; Gu, C.; Wang, S.; Zhao, W.; Wheeler, P.; Buticchi, G. Modeling and Stability Enhancement of a Permanent Magnet Synchronous Generator Based DC System for More Electric Aircraft. IEEE Trans. Ind. Electron. 2022, 69, 2511–2520. [Google Scholar] [CrossRef]
- Bozhko, S.; Yeoh, S.S.; Gao, F.; Hill, C. Aircraft starter-generator system based on permanent-magnet machine fed by active front-end rectifier. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 2958–2964. [Google Scholar]
- Wang, L.; Bao, Q.; Liu, M. Control Strategy for Islanding Generation of Micro Gas Turbine System. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4. [Google Scholar]
- Tang, Y.; Zhang, Y.; Hasankhani, A.; VanZwieten, J. Adaptive Super-Twisting Sliding Mode Control for Ocean Current Turbine-Driven Permanent Magnet Synchronous Generator. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 211–217. [Google Scholar]
- Zhang, X.; Yang, J. A DC-Link Voltage Fast Control Strategy for High-Speed PMSM/G in Flywheel Energy Storage System. IEEE Trans. Ind. Appl. 2018, 54, 1671–1679. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, M.; Ma, Y.; Wen, S. Improved Linear Active Disturbance Rejection Controller Control Considering Bus Voltage Filtering in Permanent Magnet Synchronous Generator. IEEE Access 2020, 8, 19982–19996. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y.; Ma, Y.; Yang, L.; Yang, X.; Zhang, B. DC Bus Voltage Control of Grid-Side Converter in Permanent Magnet Synchronous Generator Based on Improved Second-Order Linear Active Disturbance Rejection Control. Energies 2020, 13, 4592. [Google Scholar] [CrossRef]
- Jlassi, I.; Cardoso, A.J.M. Enhanced and Computationally Efficient Model Predictive Flux and Power Control of PMSG Drives for Wind Turbine Applications. IEEE Trans. Ind. Electron. 2021, 68, 6574–6583. [Google Scholar] [CrossRef]
- Ji, J.; Jin, S.; Zhao, W.; Xu, D.; Huang, L.; Qiu, X. Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSG. IEEE Trans. Energy Convers. 2022, 37, 1145–1155. [Google Scholar] [CrossRef]
- Suyapan, A.; Areerak, K.; Bozhko, S.; Yeoh, S.S.; Areerak, K. Adaptive Stabilization of a Permanent Magnet Synchronous Generator-Based DC Electrical Power System in More Electric Aircraft. IEEE Trans. Transp. Electrif. 2021, 7, 2965–2975. [Google Scholar] [CrossRef]
- Zafran, M.; Khan, L.; Khan, Q.; Alam, Z.; Ullah, A.; Khan, M.A. Terminal Sliding Mode based Finite-Time MPPT Control for PMSG-WECS based Standalone System. In Proceedings of the 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 29–30 January 2020; pp. 1–7. [Google Scholar]
- Ye, J.; Yang, X.; Ye, H.; Hao, X. Full discrete sliding mode controller for three phase PWM rectifier based on load current estimation. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 2349–2356. [Google Scholar]
- Bartoszewicz, A.; Leśniewski, P. New Switching and Nonswitching Type Reaching Laws for SMC of Discrete Time Systems. IEEE Trans. Control Syst. Technol. 2016, 24, 670–677. [Google Scholar] [CrossRef]
- Wang, A.; Jia, X.; Dong, S. A New Exponential Reaching Law of Sliding Mode Control to Improve Performance of Permanent Magnet Synchronous Motor. IEEE Trans. Magn. 2013, 49, 2409–2412. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Z.; Han, J.; Jiang, W. Sliding mode control of permanent magnet generator system based on improved exponential rate reaching law. IET Electr. Power Appl. 2020, 14, 1154–1162. [Google Scholar] [CrossRef]
- Dehkordi, N.M.; Sadati, N.; Hamzeh, M. A Robust Backstepping High-Order Sliding Mode Control Strategy for Grid-Connected DG Units With Harmonic/Interharmonic Current Compensation Capability. IEEE Trans. Sustain. Energy 2017, 8, 561–572. [Google Scholar] [CrossRef]
- Utkin, V. Discussion Aspects of High-Order Sliding Mode Control. IEEE Trans. Autom. Control 2016, 61, 829–833. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. Strict Lyapunov Functions for the Super-Twisting Algorithm. IEEE Trans. Autom. Control 2012, 57, 1035–1040. [Google Scholar] [CrossRef]
- Lascu, C.; Argeseanu, A.; Blaabjerg, F. Supertwisting Sliding-Mode Direct Torque and Flux Control of Induction Machine Drives. IEEE Trans. Power Electron. 2020, 35, 5057–5065. [Google Scholar] [CrossRef]
- Mishra, J.P.; Wang, L.; Zhu, Y.; Yu, X.; Jalili, M. A Novel Mixed Cascade Finite-Time Switching Control Design for Induction Motor. IEEE Trans. Ind. Electron. 2019, 66, 1172–1181. [Google Scholar] [CrossRef]
- Gonzalez, T.; Moreno, J.A.; Fridman, L. Variable Gain Super-Twisting Sliding Mode Control. IEEE Trans. Autom. Control 2012, 57, 2100–2105. [Google Scholar] [CrossRef]
- Pan, Q.; Fei, J.; Xue, Y. Adaptive Intelligent Super-Twisting Control of Dynamic System. IEEE Access 2022, 10, 42396–42403. [Google Scholar] [CrossRef]
- Hou, Q.; Ding, S.; Yu, X. Composite Super-Twisting Sliding Mode Control Design for PMSM Speed Regulation Problem Based on a Novel Disturbance Observer. IEEE Trans. Energy Convers. 2021, 36, 2591–2599. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X. Super Twisting Control Design for HSPMSG Voltage Stabilization Based on Disturbance Observation Compensation. IEEE Trans. Energy Convers. 2022, 38, 1387–1395. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Zhang, X.; Liang, J. A New Reaching Law for Antidisturbance Sliding-Mode Control of PMSM Speed Regulation System. IEEE Trans. Power Electron. 2020, 35, 4117–4126. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, X.; Tian, B.; Wang, K.; Liang, J. Antidisturbance Sliding Mode-Based Deadbeat Direct Torque Control for PMSM Speed Regulation System. IEEE Trans. Transp. Electrif. 2021, 7, 2705–2714. [Google Scholar] [CrossRef]
- Yu, X.; Kaynak, O. Sliding-Mode Control With Soft Computing: A Survey. IEEE Trans. Ind. Electron. 2009, 56, 3275–3285. [Google Scholar]
- Gao, W.; Hung, J.C. Variable structure control of nonlinear systems: A new approach. IEEE Trans. Ind. Electron. 1993, 40, 45–55. [Google Scholar]
Parameters | Value | Unit |
---|---|---|
Rated power | 500 | W |
Rated speed | 12,000 | r/min |
Pole pairs | 1 | -- |
dc-side voltage | 60 | V |
Phase resistance | 0.1 | Ω |
d-axis inductance | 82.5 | μH |
q-axis inductance | 82.5 | μH |
Switching frequency | 20 | kHz |
Different Control Methods | Δudc/V | tv/ms |
---|---|---|
PI | 1.8 | 45 |
SMC | 1.4 | 20 |
ST-SMC | 0.6 | 15 |
IST-SMC | 0.35 | 10 |
Different Control Methods | Δudc/V | tv/ms |
---|---|---|
PI | 11 | 80 |
SMC | 8.2 | 78 |
ST-SMC | 5.3 | 64 |
IST-SMC | 3.5 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Q.; Wang, X.; Yao, C.; Zhuang, W.; Shao, M.; Gao, H. A Second-Order Sliding Mode Voltage Controller with Fast Convergence for a Permanent Magnet Synchronous Generator System. Processes 2024, 12, 71. https://doi.org/10.3390/pr12010071
Yun Q, Wang X, Yao C, Zhuang W, Shao M, Gao H. A Second-Order Sliding Mode Voltage Controller with Fast Convergence for a Permanent Magnet Synchronous Generator System. Processes. 2024; 12(1):71. https://doi.org/10.3390/pr12010071
Chicago/Turabian StyleYun, Qinsheng, Xiangjun Wang, Chen Yao, Wei Zhuang, Menglin Shao, and Haibo Gao. 2024. "A Second-Order Sliding Mode Voltage Controller with Fast Convergence for a Permanent Magnet Synchronous Generator System" Processes 12, no. 1: 71. https://doi.org/10.3390/pr12010071
APA StyleYun, Q., Wang, X., Yao, C., Zhuang, W., Shao, M., & Gao, H. (2024). A Second-Order Sliding Mode Voltage Controller with Fast Convergence for a Permanent Magnet Synchronous Generator System. Processes, 12(1), 71. https://doi.org/10.3390/pr12010071