Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake
Abstract
1. Introduction
2. Materials and Methods
2.1. Process Scheme
2.2. Determination of Process Parameters
2.2.1. Anaerobic Digestion
2.2.2. Hydrothermal Carbonization
2.3. Methane Production Potential of HTC-L
2.3.1. Theoretical Methane Potential
2.3.2. Methane Potential Assay of HTC-L
2.4. Analysis
2.5. Efficiency Parameters
3. Results and Discussion
3.1. Livestock Manure Anaerobic Co-Digestion
3.2. Hydrothermal Carbonization Reaction Using Anaerobic Co-Digestion Sludge from Livestock Manure
3.3. Evaluation of Bioenergy Recovery Efficiency in Anaerobic Co-Digestion and Hydrothermal Carbonization Integrated Process for Livestock Manure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MOTIE [Ministry of Trade Industry and Energy]. New & Renewable Energy White Paper; Ministry of Trade Industry and Energy: Sejong City, Republic of Korea, 2020. [Google Scholar]
- Zubair, M.; Wang, S.; Zhang, P.; Ye, J.; Liang, J.; Nabi, M.; Zhou, Z.; Tao, X.; Chen, N.; Sun, K. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresour. Technol. 2020, 301, 122823. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, P.; Fang, C.; Jiang, R. Phosphate recovery from animal manure wastewater by struvite crystallization and CO degasification reactor. Ecol. Chem. Eng. S 2014, 21, 89–99. [Google Scholar] [CrossRef]
- Larson, C. China’s lakes of pig manure spawn antibiotic resistance. Science 2015, 347, 704. [Google Scholar] [CrossRef] [PubMed]
- MAFRA [Ministry of Agriculture Food and Rural Affairs]. 2050 Agricultural and Food Carbon Neutrality Promotion Strategy; Ministry of Agriculture Food and Rural Affairs: Sejong-si, Republic of Korea, 2021. [Google Scholar]
- Nicholson, F.A.; Groves, S.J.; Chambers, B.J. Pathogen survival during livestock manure storage and following land application. Bioresour. Technol. 2005, 96, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A review of the processes, parameters, and optimization of anaerobic digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Laiq Ur Rehman, M.; Iqbal, A.; Chang, C.C.; Li, W.; Ju, M. Anaerobic digestion. Water Environ. Res. 2019, 91, 1253–1271. [Google Scholar] [CrossRef]
- ME [Ministry of Environment]. Status of Installation and Operation of Food Waste Treatment Facilities in 2020; Ministry of Environment: Sejong-si, Republic of Korea, 2021. [Google Scholar]
- Kim, J.; Yoon, Y.-M.; Jeong, K.-H.; Kim, C.-H. Effects of supplementation of mixed methanogens and rumen cellulolytic bacteria on biochemical methane potential with pig slurry. Korean J. Soil Sci. Fertil. 2012, 45, 1049–1057. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, C.; Kim, Y.; Park, H. The economical evaluation of biogas production facility of pig waste. Korean J. Agric. Manag. Policy 2009, 36, 137–157. [Google Scholar]
- Lehtomäki, A.; Huttunen, S.; Rintala, J. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resour. Conserv. Recycl. 2007, 51, 591–609. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, C.-H.; Yoon, Y.-M. Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials. Anim. Biosci. 2023, 36, 818. [Google Scholar] [CrossRef]
- Park, S.Y.; Jang, J.A.; Zhao, X.; Hong, J.K.; Jho, E.H. Effect of Rice Straw on Methane Production Potential of Cow Manure. Korean J. Environ. Agric. 2022, 41, 71–81. [Google Scholar] [CrossRef]
- ME [Ministry of Environment]. The Study for the Establishment of Quality and Classification Criteria of Solid Fuel Using Livestock Manure; Ministry of Environment: Sejong-si, Republic of Korea, 2013. [Google Scholar]
- Oh, S.-Y.; Kim, C.-H.; Yoon, Y.-M. The bioenergy conversion characteristics of feedlot manure discharging from beef cattle barn. Korean J. Soil Sci. Fertil. 2015, 48, 697–704. [Google Scholar] [CrossRef]
- MarañóN, E.; Castrillón, L.; Vázquez, I.; Sastre, H. The influence of hydraulic residence time on the treatment of cattle manure in UASB reactors. Waste Manag. Res. 2001, 19, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.; Harun, R.M.; Mohd Ghazi, T.; Wan Azlina, W.; Idris, A.; Yunus, R. Anaerobic treatment of cattle manure for biogas production. In Proceedings of the Annual Meeting of American Institute of Chemical Engineers, Philadelphia, PA, USA, 16–21 November 2008; pp. 1–10. [Google Scholar]
- Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 2015, 12, 26–37. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, B.-J.; Lin, Y.-Y.; Chu, Y.-S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.-S.; Ho, S.-H.; Culaba, A.B. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Zhu, G.; Xu, J.; Yuan, Q.; Zhu, Y.; Sarma, J.; Wang, Y.; Wang, J.; Ji, L. Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products. Energy 2018, 165, 662–672. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, Y.-W. Effects of hydro-thermal reaction temperature on anaerobic biodegradability of piggery manure hydrolysate. Korean J. Soil Sci. Fertil. 2015, 48, 602–609. [Google Scholar] [CrossRef]
- Ahring, B.K.; Ibrahim, A.A.; Mladenovska, Z. Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res. 2001, 35, 2446–2452. [Google Scholar] [CrossRef]
- Kim, D.J. Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion. Clean Technol. 2013, 19, 355–369. [Google Scholar] [CrossRef]
- Marin-Batista, J.; Villamil, J.; Qaramaleki, S.; Coronella, C.; Mohedano, A.; de La Rubia, M. Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renew. Energy 2020, 160, 623–632. [Google Scholar] [CrossRef]
- González, R.; Ellacuriaga, M.; Aguilar-Pesantes, A.; Carrillo-Peña, D.; García-Cascallana, J.; Smith, R.; Gómez, X. Feasibility of coupling anaerobic digestion and hydrothermal carbonization: Analyzing thermal demand. Appl. Sci. 2021, 11, 11660. [Google Scholar] [CrossRef]
- Lu, Y.; Fang, Z.; Gao, C. Stabilization of (state, input)-disturbed CSTRs through the port-Hamiltonian systems approach. arXiv 2017, arXiv:1707.01560. [Google Scholar] [CrossRef]
- Han, S.K.; Kim, M.I. Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge. J. Korea Org. Resour. Recycl. Assoc. 2023, 31, 53–61. [Google Scholar] [CrossRef]
- Boyle, W. Energy recovery from sanitary landfills—A review. Microb. Energy Convers. 1977, 119–138. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, J.-H.; Kim, S.-Y.; Yoon, Y.-M. Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater. Processes 2023, 11, 759. [Google Scholar] [CrossRef]
- Luna-deRisco, M.; Normak, A.; Orupõld, K. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron. Res. 2011, 9, 331–342. [Google Scholar]
- Rao, M.; Singh, S.; Singh, A.; Sodha, M. Bioenergy conversion studies of the organic fraction of MSW: Assessment of ultimate bioenergy production potential of municipal garbage. Appl. Energy 2000, 66, 75–87. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 1998; p. 324. [Google Scholar]
- Lay, J.-J.; Li, Y.-Y.; Noike, T. Mathematical model for methane production from landfill bioreactor. J. Environ. Eng. 1998, 124, 730–736. [Google Scholar] [CrossRef]
- ME [Ministry of Environment]. Practical Guidelines for Maintenance of Public Sewerage Facilities; Ministry of Environment: Sejong-si, Republic of Korea, 2005. [Google Scholar]
- Song, E.; Kim, H.; Kim, K.W.; Yoon, Y.-M. Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure. Energies 2023, 16, 3265. [Google Scholar] [CrossRef]
- ME [Ministry of Environment]. Energy-Saving (Less than 210 Mcal/Ton Raw Material) Solid Fuel Production Technology Using a Hydrothermal Carbonization Reactor Using a Sewage/Wastewater Sludge (Water Content of around 80%); Ministry of Environment: Sejong-si, Republic of Korea, 2020. [Google Scholar]
- Van Velsen, A. Adaptation of methanogenic sludge to high ammonia-nitrogen concentrations. Water Res. 1979, 13, 995–999. [Google Scholar] [CrossRef]
- Lili, M.; Biró, G.; Sulyok, E.; Petis, M.; Borbély, J.; Tamás, J. Novel approach on the basis of FOS/TAC method. Analele Univ. Din Oradea Fasc. Protecţia Mediu. 2011, 17, 713–718. [Google Scholar]
- Demirer, G.; Chen, S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 2005, 40, 3542–3549. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Li, X.; Saifullah Lar, J.; He, Y.; Zhu, B. Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels 2009, 23, 2225–2228. [Google Scholar] [CrossRef]
- Wei, L.; Qin, K.; Ding, J.; Xue, M.; Yang, C.; Jiang, J.; Zhao, Q. Optimization of the co-digestion of sewage sludge, maize straw and cow manure: Microbial responses and effect of fractional organic characteristics. Sci. Rep. 2019, 9, 2374. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, J.; Krooneman, J.; Euverink, G.J.W. Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Sci. Total Environ. 2021, 755, 142940. [Google Scholar] [CrossRef]
- Gao, J.; Chen, L.; Yuan, K.; Huang, H.; Yan, Z. Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour. Technol. 2013, 150, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Zhou, Y.; Meng, F.; Zhang, Y.; Liu, Z.; Zhang, W.; Xue, G. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 2016, 97, 238–245. [Google Scholar] [CrossRef]
- Ferrer, I.; Ponsá, S.; Vázquez, F.; Font, X. Increasing biogas production by thermal (70 C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, H.; Kim, C.-H.; Yoon, Y.-M. Effect of the pretreatment by thermal hydrolysis on biochemical methane potential of piggery sludge. Korean J. Soil Sci. Fertil. 2012, 45, 524–531. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Yoon, Y.-M. Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization. Energies 2017, 10, 1876. [Google Scholar] [CrossRef]
- Gossett, R.W.; Brown, D.A.; Young, D.R. Predicting the bioaccumulation and toxicity of organic compounds. Coast. Water Res. Proj. Bienn. Rep. 1981, 1982, 149–156. [Google Scholar]
- Jain, S.; Sharma, M. Power generation from MSW of Haridwar city: A feasibility study. Renew. Sustain. Energy Rev. 2011, 15, 69–90. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Martins, S.I.; Jongen, W.M.; Van Boekel, M.A. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Imeni, S.M.; Pelaz, L.; Corchado-Lopo, C.; Busquets, A.M.; Ponsá, S.; Colón, J. Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Bioresour. Technol. 2019, 291, 121872. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014, 130, 120–125. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.; Ross, A.; Camargo-Valero, M. Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy 2017, 208, 1357–1369. [Google Scholar] [CrossRef]
Parameters | pH | TS 1 | VS 2 | TKN 3 | NH4+-N 4 | COD 5 | SCOD 6 | Alkalinity (as CaCO3) | TVFAs 7 (as Acetate) |
---|---|---|---|---|---|---|---|---|---|
mg/L | |||||||||
Inoculum | 8.4 (0.02) 8 | 33,150 (650) | 19,233 (858) | 6006 (179) | 4810 (277) | 21,033 (816) | 5667 (165) | 28,650 (177) | 617 (23) |
Parameters | TS 1 | VS 2 | TKN 3 | NH4+-N 4 |
---|---|---|---|---|
mg/kg (mg/L for PS) | ||||
PS (Pig slurry) | 47,550 (1493) 5 | 33,467 (1258) | 7086 (295) | 5503 (194) |
FCM (Feedlot cattle manure) | 219,991 (2116) | 189,914 (2953) | 5064 (76) | 1412 (67) |
Mixture (PS:FCM = 1:1 (w/w)) | 132,907 (119) | 109,631 (851) | 6719 (543) | 3543 (119) |
Parameters | pH | TS 1 | VS 2 | TKN 3 | NH4+-N 4 | COD 5 | SCOD 6 | Alkalinity (as CaCO3) | TVFAs 7 (as Acetate) |
---|---|---|---|---|---|---|---|---|---|
mg/L | |||||||||
Inoculum | 7.9 (0.01) 8 | 59,347 (1634) | 31,007 (1146) | 5188 (176) | 3262 (79) | 39,250 (823) | 2498 (361) | 34,238 (430) | 1165 (37) |
Operation Stages | Units | R1 | R2 | R3 |
---|---|---|---|---|
HRT 1 | days | 40 | 30 | 20 |
Operation period | 72 | 56 | 56 | |
Bu-exp 2 | Nm3/kg-VSadded | 0.16 | 0.15 | 0.14 |
Methane production | Nm3/ton | 17.4 | 16.3 | 15.2 |
pH | - | 8.0 (0.12) 10 | 7.9 (0.10) | 7.9 (0.10) |
TS 3 | mg/L | 51,648 (11,438) | 68,246 (12,126) | 95,877 (17,751) |
VS 4 | mg/L | 37,574 (10,764) | 53,227 (11,643) | 76,392 (16,877) |
COD 5 | mg/L | 36,291 (5307) | 45,498 (9154) | 64,333 (13,712) |
SCOD 6 | mg/L | 9107 (1090) | 12,122 (3276) | 16,395 (3928) |
TKN 7 | mg/L | 5614 (448) | 4938 (369) | 5631 (586) |
NH4+-N 8 | mg/L | 4146 (388) | 3450 (289) | 3734 (314) |
Alkalinity | mg/L as (CaCO3) | 21,054 (1088) | 19,843 (1011) | 22,730 (1152) |
TVFAs 9 | mg/L (as acetate) | 2728 (454) | 2302 (305) | 2106 (103) |
Parameters | AD-T 1 | AD-S 2 | HTC-H 3 | ||||
---|---|---|---|---|---|---|---|
160 °C | 180 °C | 200 °C | 220 °C | ||||
TS 4 | mg/kg | 168,468 (365) 8 | 267,370 (7083) | 260,375 (2942) | 257,419 (5411) | 203,799 (8802) | 227,572 (3485) |
VS 5 | 116,030 (866) | 189,545 (7139) | 181,628 (982) | 171,833 (3869) | 140,056 (5315) | 145,909 (4003) | |
TKN 6 | 10,233 (165) | 11,448 (145) | 9577 (264) | 9886 (192) | 8867 (534) | 9759 (237) | |
NH4+-N 7 | 5431 (213) | 6180 (32) | 4430 (126) | 4213 (49) | 4220 (171) | 4334 (142) |
Parameters | HTC-S 1 | ||||
---|---|---|---|---|---|
160 °C | 180 °C | 200 °C | 220 °C | ||
TS 2 | mg/kg | 325,556 (6959) 7 | 285,978 (6142) | 317,879 (4227) | 345,129 (1439) |
VS 3 | 220,473 (8687) | 191,284 (4225) | 214,302 (2569) | 218,607 (1476) | |
TKN 4 | 10,784 (336) | 11,610 (391) | 11,452 (269) | 11,709 (361) | |
NH4+-N 5 | 4530 (76) | 5522 (31) | 4555 (85) | 4331 (108) | |
HHV 6 | kJ/kg | 16,050 | 15,661 | 15,945 | 15,313 |
Parameters | HTC-L 1 | |||||
---|---|---|---|---|---|---|
160 °C | 180 °C | 200 °C | 220 °C | |||
pH | - | 8.7 (0.01) 9 | 8.3 (0.01) | 8.4 (0.01) | 8.1 (0.01) | |
TS 2 | mg/L | 51,833 (1235) | 51,333 (2941) | 50,289 (499) | 46,200 (1014) | |
VS 3 | mg/L | 33,489 (683) | 33,133 (2641) | 31,511 (440) | 25,622 (1887) | |
TKN 4 | mg/L | 6755 (194) | 7576 (77) | 7131 (481) | 7362 (432) | |
NH4+-N 5 | mg/L | 4212 (170) | 5089 (16) | 4811 (280) | 4886 (51) | |
COD 6 | mg/L | 51,850 (879) | 46,450 (1203) | 49,600 (265) | 44,150 (862) | |
SCOD 7 | mg/L | 39,595 (2202) | 43,900 (482) | 48,215 (436) | 42,620 (1351) | |
Alkalinity | mg/L (as CaCO3) | 20,775 (416) | 24,050 (350) | 20,600 (325) | 20,225 (513) | |
TVFAs 8 | mg/L (as acetate) | 2039 (33) | 2842 (15) | 4180 (19) | 13,729 (24) | |
Elemental composition | C | % | 32.1 | 30.6 | 30.1 | 31.6 |
H | % | 2.8 | 3.2 | 2.7 | 2.8 | |
O | % | 27.1 | 32.7 | 21.6 | 38.2 | |
N | % | 3.3 | 1.5 | 3.0 | 1.7 | |
S | % | 2.2 | 1.2 | 1.2 | 1.5 |
Parameters | Reaction Temperature | HTC-L 1 | ||||
---|---|---|---|---|---|---|
160 °C | 180 °C | 200 °C | 220 °C | |||
Bth 2 | Nm3/kg-VSadded | 0.38 | 0.36 | 0.44 | 0.30 | |
Bu-exp 3 | Nm3/kg-VSadded | 0.11 | 0.17 | 0.23 | 0.27 | |
Methane production | Nm3/ton | 3.8 | 5.6 | 7.2 | 6.9 | |
VSr 4 | % | 30.1 | 46.7 | 51.5 | 90.2 | |
Model parameters | Bu-p 5 | Nm3/kg-VSadded | 0.11 | 0.16 | 0.22 | 0.27 |
Bmax 6 | mL | 141 | 200 | 276 | 335 | |
fe 7 | - | 0.61 | 0.64 | 0.56 | 0.56 | |
k1 8 | - | 0.11 | 0.09 | 0.07 | 0.05 | |
k2 9 | - | 0.04 | 0.05 | 0.05 | 0.05 |
HRT 1 | Process | Input and Output Materials | Input | Output | ||||
---|---|---|---|---|---|---|---|---|
Amount | Solid | Calorific Value | Solid Yield | Methane Yield | Calorific Value | |||
days | kg | kg | MJ/kg | kg | Nm3/kg-VSadded | MJ/kg | ||
Input | FCM 2 | 0.5 | 0.110 | 15.3 | - | - | - | |
PS 3 | 0.5 | 0.024 | 18.9 | - | - | - | ||
Mixture | 1.0 | 0.133 | 17.1 | - | - | - | ||
40 | AD 4 | AD-T 5 | - | - | 0.052 | 0.157 | - | |
AD-S 6 | - | - | 0.039 | - | - | |||
HTC 7 | HTC-H 8 | - | - | 0.038 | - | - | ||
HTC-S 9 | - | - | 0.036 | - | 16.05 | |||
HTC-L 10 | - | - | 0.002 | 0.103 | - | |||
30 | AD | AD-T | - | - | 0.068 | 0.149 | - | |
AD-S | - | - | 0.050 | - | - | |||
HTC | HTC-H | - | - | 0.049 | - | - | ||
HTC-S | - | - | 0.046 | - | 16.05 | |||
HTC-L | - | - | 0.003 | 0.097 | - | |||
20 | AD | AD-T | - | - | 0.096 | 0.138 | - | |
AD-S | - | - | 0.071 | - | - | |||
HTC | HTC-H | - | - | 0.070 | - | - | ||
HTC-S | - | - | 0.066 | - | 16.05 | |||
HTC-L | - | - | 0.004 | 0.086 | - |
HRT 1 | Days | 40 | 30 | 20 | ||
---|---|---|---|---|---|---|
Input energy 2 | MJ/day, (%) | 171,167 | 171,167 | 171,167 | ||
(100.0) | (100.0) | (100.0) | ||||
Output energy | Solid fuel | HTC-S 3 | 58,082 | 75,161 | 107,259 | |
(33.9) | (43.9) | (62.7) | ||||
Gas fuel (methane) | Livestock manure | 68,517 | 65,100 | 60,336 | ||
(40.0) | (38.0) | (35.3) | ||||
HTC-L 4 | 24.8 | 39.1 | 70.6 | |||
(0.01) | (0.02) | (0.04) | ||||
Loss energy 5 | 87,016 | 73,339 | 45,973 | |||
(26.0) | (18.0) | (2.1) | ||||
Consumption energy | HTC 6 | MJ/day | 14,568 | 18,852 | 26,903 | |
Dry 7 | 5563 | 7199 | 10,273 | |||
Gross bioenergy recovery 8 | % | 74.0 | 82.0 | 98.0 | ||
Net bioenergy recovery 9 | 62.2 | 66.5 | 76.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Yoon, Y.-M. Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake. Processes 2024, 12, 198. https://doi.org/10.3390/pr12010198
Lee J-H, Yoon Y-M. Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake. Processes. 2024; 12(1):198. https://doi.org/10.3390/pr12010198
Chicago/Turabian StyleLee, Jun-Hyeong, and Young-Man Yoon. 2024. "Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake" Processes 12, no. 1: 198. https://doi.org/10.3390/pr12010198
APA StyleLee, J.-H., & Yoon, Y.-M. (2024). Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake. Processes, 12(1), 198. https://doi.org/10.3390/pr12010198