Rural Integrated Energy System Based on Bibliometric Analysis: A Review of Recent Progress
Abstract
:1. Introduction
2. System Structure
2.1. Off-Grid Energy System
2.2. Grid-Connected Energy System
3. Method of System Design
3.1. Rule-Based Method
3.2. Optimization Method
Ref. | Optimization Methods | Employed Algorithm | Objective |
---|---|---|---|
Kamal [47] | Heuristic algorithm | Moth Flame Algorithm Genetic Algorithm Particle Swarm Algorithm | Net present cost |
Saha [48] | Heuristic algorithm | Discrete Gray Wolf Optimization Simulated Annealing Particle Swarm Algorithm Genetic Algorithm | Net present cost |
Mustafa Kamal [49] | Hybrid Optimization Heuristic algorithm | HOMER Particle Swarm Algorithm Genetic Algorithm | Net present cost Cost of energy Life cycle emission cost |
Mahmoud [50] | Heuristic algorithm | Salp Swarm Algorithm Gray Wolf Algorithm Improved Gray Wolf Algorithm | Cost of energy |
Abd El-Sattar [54] | Heuristic algorithm | Seagull Optimization Algorithm Slime Mould Algorithm Gray Wolf Optimizer Whale Optimization Algorithm Sine Cosine Algorithm | Energy cost |
Mahdavi [52] | Mathematical programming | Mixed-Integer Linear Programming | Total cost |
Weckesser [55] | Mathematical programming | Linear Programming | Total cost |
Ahmed [56] | Mathematical programming | Mixed-Integer Linear Programming | Net present cost |
Benalcazar [53] | Mathematical programming | Linear Programming | Total life cycle cost |
Ruiz [51] | Mathematical programming | Mixed-Integer Programming | Total cost Total emissions |
4. Bibliometric Analysis
4.1. Data Source and Retrieval Method
4.2. Evaluation Index
4.3. Results of Bibliometric Analysis
4.3.1. Annual Publication and Citation
4.3.2. Country Distribution
4.3.3. Institute Distribution
4.3.4. Author Analysis
4.3.5. Collaboration Analysis
4.3.6. Journal Distribution
4.3.7. Highly Cited Papers Analysis
Article | Authors | Year | Journal | Citations |
---|---|---|---|---|
Off-grid electricity generation with renewable energy technologies in India: An application of HOMER | Sen et al. [76] | 2014 | Renewable Energy | 447 |
Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass, and battery energy storage system | Singh et al. [82] | 2016 | Energy Conversion and Management | 315 |
Optimal dispatch for a microgrid incorporating renewables and demand response | Nwulu et al. [83] | 2017 | Renewable Energy | 279 |
Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources | Adefarati et al. [77] | 2019 | Applied Energy | 268 |
Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh | Mandal et al. [78] | 2018 | Journal of Cleaner Production | 263 |
Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia | Halabi et al. [79] | 2017 | Energy Conversion and Management | 260 |
Optimization of an off-grid hybrid PV-Wind-Diesel system with different battery technologies using genetic algorithm | Merei et al. [75] | 2013 | Solar Energy | 255 |
Techno-economic feasibility of photovoltaic, wind, diesel, and hybrid electrification systems for off-grid rural electrification in Colombia | Mamaghani et al. [16] | 2016 | Renewable Energy | 254 |
Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate | Ismail et al. [80] | 2013 | Energy Conversion and Management | 253 |
Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software | Shahzad et al. [81] | 2017 | Renewable Energy | 248 |
4.3.8. Co-Word Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naumann, M.; Rudolph, D. Conceptualizing rural energy transitions: Energizing rural studies, ruralizing energy research. J. Rural Stud. 2020, 73, 97–104. [Google Scholar] [CrossRef]
- Hu, H.Z. China Energy Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Zhang, X.X.; Xu, K.L.; He, M.G.; Wang, J.F. A Review on the Rural Household Energy in China from 1990s-Transition, Regional Heterogeneity, Emissions, Energy-Saving, and Policy. Front. Energy Res. 2022, 10, 907803. [Google Scholar] [CrossRef]
- Yang, X.P.; Zhang, D.C.; Jia, Q.Q.; Zhang, W.T.; Wang, T.Y. Exploring the Dynamic Coupling Relationship between Agricultural Economy and Agro-Ecological Environment in Semi-Arid Areas: A Case Study of Yulin, China. Sustainability 2019, 11, 2259. [Google Scholar] [CrossRef]
- Roldan, C.S.; Giraldo, G.A.M.; Santana, E.L. Sustainable Development in Rural Territories within the Last Decade: A Review of the State of the Art. Heliyon 2023, 9, e17555. [Google Scholar] [CrossRef] [PubMed]
- Stennikov, V.; Barakhtenko, E.; Sokolov, D.; Zhou, B. Current state of research on the energy management and expansion planning of integrated energy systems. Energy Rep. 2022, 8, 10025–10036. [Google Scholar] [CrossRef]
- Kang, L.G.; Wu, X.J.; Yuan, X.X.; Wang, Y.Z. Performance indices review of the current integrated energy system: From history and projects in China. Sustain. Energy Technol. Assess. 2022, 53, 102785. [Google Scholar] [CrossRef]
- Song, D.R.; Meng, W.Q.; Dong, M.; Yang, J.; Wang, J.L.; Chen, X.J.; Huang, L.S. A critical survey of integrated energy system: Summaries, methodologies and analysis. Energy Convers. Manag. 2022, 266, 115863. [Google Scholar] [CrossRef]
- He, Y.; Guo, S.; Dong, P.X.; Zhang, Y.; Huang, J.; Zhou, J.X. A state-of-the-art review and bibliometric analysis on the sizing optimization of off-grid hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2023, 183, 113476. [Google Scholar] [CrossRef]
- Modu, B.; Abdullah, M.P.; Bukar, A.L.; Hamza, M.F. A systematic review of hybrid renewable energy systems with hydrogen storage: Sizing, optimization, and energy management strategy. Int. J. Hydrogen Energy 2023, 48, 38354–38373. [Google Scholar] [CrossRef]
- Alabi, T.M.; Aghimien, E.I.; Agbajor, F.D.; Yang, Z.Y.; Lu, L.; Adeoye, A.R.; Gopaluni, B. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renew. Energy 2022, 194, 822–849. [Google Scholar] [CrossRef]
- Ma, X.Y.; Mu, Y.F.; Li, S.R.; Jiang, X.Y.; Li, H.; Chen, C.J. Review on the optimal operation of integrated energy system in data center. Electr. Power Constr. 2022, 43, 1–13. [Google Scholar]
- Fang, S.D.; Zhao, C.H.; Ding, Z.H.; Zhang, S.X.; Liao, R.J. Port integrated energy systems toward carbon neutrality (Part 1): Typic topology and key problems. Proc. CSEE 2023, 43, 114–135. [Google Scholar]
- Li, J.Z.; Liu, P.; Li, Z. Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy 2020, 208, 118387. [Google Scholar] [CrossRef]
- Li, J.Z.; Liu, P.; Li, Z. Optimal design and techno-economic analysis of a hybrid renewable energy system for off-grid power supply and hydrogen production: A case study of West China. Chem. Eng. Res. Des. 2022, 177, 604–614. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Escandon, S.A.A.; Najafi, B.; Shirazi, A.; Rinaldi, F. Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renew. Energy 2016, 97, 293–305. [Google Scholar] [CrossRef]
- Ngila Mulumba, A.; Farzaneh, H. Techno-economic analysis and dynamic power simulation of a hybrid solar-wind-battery-flywheel system for off-grid power supply in remote areas in Kenya. Energy Convers. Manag. X 2023, 18, 100381. [Google Scholar] [CrossRef]
- Hermann, T.D.; Donatien, N.; Konchou Franck Armel, T.; René, T. Techno-economic and environmental feasibility study with demand-side management of photovoltaic/wind/hydroelectricity/battery/diesel: A case study in Sub-Saharan Africa. Energy Convers. Manag. 2022, 258, 115494. [Google Scholar] [CrossRef]
- Ngouleu, W.C.A.; Koholé, Y.W.; Fohagui, F.C.V.; Tchuen, G. Techno-economic analysis and optimal sizing of a battery-based and hydrogen-based standalone photovoltaic/wind hybrid system for rural electrification in Cameroon based on meta-heuristic techniques. Energy Convers. Manag. 2023, 280, 116794. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Toopshekan, A.; Mehrpooya, M.; Delpisheh, M. Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems. Renew. Energy 2023, 210, 40–63. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, S.; De, S. Multi criteria decision making for the most suitable combination of energy resources for a decentralized hybrid energy solution with green hydrogen as the storage option. Energy Convers. Manag. 2023, 285, 117028. [Google Scholar] [CrossRef]
- HassanzadehFard, H.; Tooryan, F.; Dargahi, V. Standalone hybrid system energy management optimization for remote village considering methane production from livestock manure. Int. J. Hydrogen Energy 2023, 48, 10778–10796. [Google Scholar] [CrossRef]
- Koholé, Y.W.; Wankouo Ngouleu, C.A.; Fohagui, F.C.V.; Tchuen, G. Quantitative techno-economic comparison of a photovoltaic/wind hybrid power system with different energy storage technologies for electrification of three remote areas in Cameroon using Cuckoo search algorithm. J. Energy Storage 2023, 68, 107783. [Google Scholar] [CrossRef]
- Shao, Z.T.; Cao, X.Y.; Zhai, Q.Z.; Guan, X.H. Risk-constrained planning of rural-area hydrogen-based microgrid considering multiscale and multi-energy storage systems. Appl. Energy 2023, 334, 120682. [Google Scholar] [CrossRef]
- Shahsavari, A.; Vaziri Rad, M.A.; Pourfayaz, F.; Kasaeian, A. Optimal sizing of an integrated CHP and desalination system as a polygeneration plant for supplying rural demands. Energy 2022, 258, 124820. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, W.P.; Zhang, S.Q.; Wang, J.F.; Dai, Y.P. Technical feasibility assessment of a standalone photovoltaic/wind/adiabatic compressed air energy storage based hybrid energy supply system for rural mobile base station. Energy Convers. Manag. 2020, 206, 112486. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Borgohain, D.; Mahapatra, S. Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy 2017, 126, 461–474. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, R.; Zhang, B.; Zheng, Y.; An, Z.J. Environment dominated evaluation modeling and collocation optimization of a distributed energy system based on solar and biomass energy. Renew. Energy 2023, 202, 1226–1240. [Google Scholar] [CrossRef]
- Ju, L.W.; Lu, X.L.; Yang, S.B.; Li, G.; Fan, W.; Pan, Y.S.; Qiao, H.T. A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response. Appl. Energy 2022, 327, 120155. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Chen, J.J.; Yang, Z.J.; Peng, K.; Zhao, Y.L.; Zhang, X.H. Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power. Energy 2021, 237, 121638. [Google Scholar] [CrossRef]
- Yu, F.Q.; Zhang, M.J.; Cheng, Y.; Chen, D.W.; Yang, H.Y.; Li, C.B. Optimal Sizing of Grid-Connected Wind-Solar-Biogas lnteqrated Energy System Considering Demand Response. J. Shanghai Jiaotong Univ. 2023, 57, 10. [Google Scholar]
- Kasaeian, A.; Rahdan, P.; Rad, M.A.V.; Yan, W.M. Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: A case study. Energy Convers. Manag. 2019, 198, 111810. [Google Scholar] [CrossRef]
- Odou, O.D.T.; Bhandari, R.; Adamou, R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew. Energy 2020, 145, 1266–1279. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Zarchi, R.A.; Astaraei, F.R.; Ghasempour, R.; Khaninezhad, F.M. Decision-making between renewable energy configurations and grid extension to simultaneously supply electrical power and fresh water in remote villages for five different climate zones. J. Clean. Prod. 2021, 279, 123617. [Google Scholar] [CrossRef]
- Demirci, A.; Öztürk, Z.; Tercan, S.M. Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones. Energy 2023, 262, 125402. [Google Scholar] [CrossRef]
- Ullah, Z.; Elkadeem, M.R.; Kotb, K.M.; Taha, I.B.M.; Wang, S. Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply. Renew. Energy 2021, 17, 885–910. [Google Scholar] [CrossRef]
- Jain, S.; Sawle, Y. Optimization and Comparative Economic Analysis of Standalone and Grid-Connected Hybrid Renewable Energy System for Remote Location. Front. Energy Res. 2021, 9, 724162. [Google Scholar] [CrossRef]
- Jahangiri, M.; Soulouknga, M.H.; Bardei, F.K.; Shamsabadi, A.A.; Akinlabi, E.T.; Sichilalu, S.M.; Mostafaeipour, A. Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. Int. J. Hydrogen Energy 2019, 44, 28613–28628. [Google Scholar] [CrossRef]
- Roy, D.; Hassan, R.; Das, B.K. A hybrid renewable-based solution to electricity and freshwater problems in the off-grid Sundarbans region of India: Optimum sizing and socio-enviro-economic evaluation. J. Clean. Prod. 2022, 372, 133761. [Google Scholar] [CrossRef]
- Belboul, Z.; Toual, B.; Kouzou, A.; Mokrani, L.; Bensalem, A.; Kennel, R.; Abdelrahem, M. Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria. Energies 2022, 15, 3579. [Google Scholar] [CrossRef]
- Suman, G.K.; Guerrero, J.M.; Roy, O.P. Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach. Sustain. Cities Soc. 2021, 67, 102723. [Google Scholar] [CrossRef]
- Güven, A.F.; Mengi, O.Ö. Assessing metaheuristic algorithms in determining dimensions of hybrid energy systems for isolated rural environments: Exploring renewable energy systems with hydrogen storage features. J. Clean. Prod. 2023, 428, 139339. [Google Scholar] [CrossRef]
- Luo, X.; Yang, Y.Z.; Liu, Y.F.; Zhao, T.L. Classification of energy use patterns and multi-objective optimal scheduling of flexible loads in rural households. Energy Build. 2023, 283, 112811. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Wang, Y.; Yuan, M.; Zhang, R.X.; Chen, Y.H.; Lou, G.Q.; Sun, Y.J. Energy saving and carbon reduction schemes for families with the household PV-BES-EV system. Energy Build. 2023, 288, 113007. [Google Scholar] [CrossRef]
- Rodriguez, M.; Arcos-Aviles, D.; Martinez, W. Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms. Appl. Energy 2023, 335, 120771. [Google Scholar] [CrossRef]
- Mokhtara, C.; Negrou, B.; Bouferrouk, A.; Yao, Y.F.; Settou, N.; Ramadan, M. Integrated supply-demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates. Energy Convers. Manag. 2020, 221, 113192. [Google Scholar] [CrossRef]
- Mustafa Kamal, M.; Ashraf, I. Evaluation of a hybrid power system based on renewable and energy storage for reliable rural electrification. Renew. Energy Focus 2023, 45, 179–191. [Google Scholar] [CrossRef]
- Saha, S.; Saini, G.; Chauhan, A.; Upadhyay, S.; Madurai Elavarasan, R.; Hossain Lipu, M.S. Optimum design and techno-socio-economic analysis of a PV/biomass based hybrid energy system for a remote hilly area using discrete grey wolf optimization algorithm. Sustain. Energy Technol. Assess. 2023, 57, 103213. [Google Scholar] [CrossRef]
- Mustafa Kamal, M.; Asharaf, I.; Fernandez, E. Optimal renewable integrated rural energy planning for sustainable energy development. Sustain. Energy Technol. Assess. 2022, 53, 102581. [Google Scholar] [CrossRef]
- Mahmoud, F.S.; Diab, A.A.Z.; Ali, Z.M.; El-Sayed, A.H.M.; Alquthami, T.; Ahmed, M.; Ramadan, H.A. Optimal sizing of smart hybrid renewable energy system using different optimization algorithms. Energy Rep. 2022, 8, 4935–4956. [Google Scholar] [CrossRef]
- Ruiz, S.; Patiño, J.; Marquez-Ruiz, A.; Oviedo, J.J.E.; Duque, E.; Ortiz, P. Optimal Design of a Diesel-PV-Wind-Battery-Hydro Pumped POWER system with the Integration of Electric vehicles in a Colombian Community. Energies 2019, 12, 4542. [Google Scholar] [CrossRef]
- Mahdavi, M.; Jurado, F.; Ramos, R.A.V.; Awaafo, A. Hybrid biomass, solar and wind electricity generation in rural areas of Fez-Meknes region in Morocco considering water consumption of animals and anaerobic digester. Appl. Energy 2023, 343, 121253. [Google Scholar] [CrossRef]
- Benalcazar, P.; Suski, A.; Kaminski, J. Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands. Energies 2020, 13, 3933. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Sultan, H.M.; Kamel, S.; Khurshaid, T.; Rahmann, C. Optimal design of stand-alone hybrid PV/wind/biomass/battery energy storage system in Abu-Monqar, Egypt. J. Energy Storage 2021, 44, 103336. [Google Scholar] [CrossRef]
- Weckesser, T.; Dominković, D.F.; Blomgren, E.M.V.; Schledorn, A.; Madsen, H. Renewable Energy Communities: Optimal sizing and distribution grid impact of photo-voltaics and battery storage. Appl. Energy 2021, 301, 117408. [Google Scholar] [CrossRef]
- Ahmed, E.E.E.; Demirci, A.; Tercan, S.M. Optimal sizing and techno-enviro-economic feasibility assessment of solar tracker-based hybrid energy systems for rural electrification in Sudan. Renew. Energy 2023, 205, 1057–1070. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com (accessed on 30 June 2023).
- Permana, D.I.; Rusirawan, D.; Farkas, I. A bibliometric analysis of the application of solar energy to the organic Rankine cycle. Heliyon 2022, 8, e09220. [Google Scholar] [CrossRef]
- Yu, A.F.; Su, W.; Lin, X.X.; Zhou, N.J. Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review. Nucl. Eng. Technol. 2020, 53, 699–714. [Google Scholar] [CrossRef]
- Li, X.Y.; Nan, H.Y.; Jiang, H.R.; Wang, H.; Wang, C.Q. Research trends on phosphorus removal from wastewater: A review and bibliometric analysis from 2000 to 2022. J. Water Process Eng. 2023, 55, 104201. [Google Scholar] [CrossRef]
- Journal Citation Reports of 2022. Available online: https://jcr.clarivate.com (accessed on 30 June 2023).
- Imran, M.; Haglind, F.; Asim, M.; Alvi, J.Z. Recent research trends in organic Rankine cycle technology: A bibliometric approach. Renew. Sustain. Energy Rev. 2018, 81, 552–562. [Google Scholar] [CrossRef]
- Yimen, N.; Tchotang, T.; Kanmogne, A.; Idriss, I.A.; Musa, B.; Aliyu, A.; Okonkwo, E.C.; Abba, S.I.; Tata, D.; Meva’a, L.; et al. Optimal Sizing and Techno-Economic Analysis of Hybrid Renewable Energy Systems—A Case Study of a Photovoltaic/Wind/Battery/Diesel System in Fanisau, Northern Nigeria. Processes 2020, 8, 1381. [Google Scholar] [CrossRef]
- Xia, T.; Rezaei, M.; Dampage, U.; Alharbi, S.A.; Nasif, O.; Borowski, P.F.; Mohamed, M.A. Techno-Economic Assessment of a Grid-Independent Hybrid Power Plant for Co-Supplying a Remote Micro-Community with Electricity and Hydrogen. Processes 2021, 9, 1375. [Google Scholar] [CrossRef]
- Habib, H.U.R.; Waqar, A.; Junejo, A.K.; Elmorshedy, M.F.; Wang, S.R.; Buker, M.S.; Akindeji, K.T.; Kang, J.; Kim, Y.S. Optimal Planning and EMS Design of PV Based Standalone Rural Microgrids. IEEE Access 2021, 9, 32908–32930. [Google Scholar] [CrossRef]
- Habib, H.U.R.; Waqar, A.; Junejo, A.K.; Ismail, M.M.; Hossen, M.; Jahangiri, M.; Kabir, A.; Khan, S.; Kim, Y.S. Optimal Planning of Residential Microgrids Based on Multiple Demand Response Programs Using ABC Algorithm. IEEE Access 2022, 10, 116564–116626. [Google Scholar] [CrossRef]
- Ramesh, M.; Saini, R.P. Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India. J. Clean. Prod. 2020, 259, 120697. [Google Scholar] [CrossRef]
- Dadak, A.; Mehrpooya, M.; Kasaeian, A. Design and development of an innovative integrated structure for the production and storage of energy and hydrogen utilizing renewable energy. Sustain. Energy Technol. Assess. 2021, 45, 101123. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ashraf, I.; Fernandez, E. Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources. Sustain. Cities Soc. 2023, 88, 104298. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ashraf, I.; Fernandez, E. Planning and optimization of microgrid for rural electrification with integration of renewable energy resources. J. Energy Storage 2022, 52, 104782. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ashraf, I.; Fernandez, E. Sustainable electrification planning of rural microgrid using renewable resources and its environmental impact assessment. Environ. Sci. Pollut. Res. 2022, 29, 86376–86399. [Google Scholar] [CrossRef]
- Maleki, A.; Filabi, Z.E.; Nazari, M.A. Techno-Economic Analysis and Optimization of an Off-Grid Hybrid Photovoltaic–Diesel–Battery System: Effect of Solar Tracker. Sustainability 2022, 14, 7296. [Google Scholar] [CrossRef]
- Alzahrani, A. Energy Management and Optimization of a Standalone Renewable Energy System in Rural Areas of the Najran Province. Sustainability 2023, 15, 8020. [Google Scholar] [CrossRef]
- Huseyin Coban, H. Assessment of Hybrid Renewable Energy System in Beledweyne city Somalia, Technical and Economical Analysis. J. Eng. Res. 2023, 11, 273–284. [Google Scholar]
- Merei, G.; Berger, C.; Sauer, D.U. Optimization of an off-grid hybrid PV-Wind-Diesel system with different battery technologies using genetic algorithm. Sol. Energy 2013, 97, 460–473. [Google Scholar] [CrossRef]
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Adefarati, T.; Bansal, R.C. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl. Energy 2019, 236, 1089–1114. [Google Scholar] [CrossRef]
- Mandal, S.; Das, B.K.; Hoque, N. Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. J. Clean. Prod. 2018, 200, 12–27. [Google Scholar] [CrossRef]
- Halabi, L.M.; Mekhilef, S.; Olatomiwa, L.; Hazelton, J. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Convers. Manag. 2017, 144, 322–339. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate. Energy Convers. Manag. 2013, 69, 163–173. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Zahid, A.; Rashid, T.U.; Rehan, M.A.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers. Manag. 2016, 128, 178–190. [Google Scholar] [CrossRef]
- Nwulu, N.I.L.; Xia, X.H. Optimal dispatch for a microgrid incorporating renewables and demand response. Renew. Energy 2017, 101, 16–28. [Google Scholar] [CrossRef]
Ref. | Configuration | Storage Type | Energy Supply |
---|---|---|---|
Li [14] | PV-WT-bio-generator-battery | Battery | Power |
Li [15] | PV-WT-bio-generator-battery- electrolyzer | Battery; Hydrogen storage | Power; Hydrogen |
Mamaghani [16] | PV; WT; DG; PV-WT; PV-DG; WT-DG; PV-WT-DG | Battery | Power |
Mulumba [17] | PV-WT-battery-flywheel | Battery; Flywheel | Power |
Hermann [18] | DG; PV-WT-battery-DG; PV-WT-hydroelectricity-battery; PV-WT-hydroelectricity-battery-DG | Battery | Power |
Ngouleu [19] | PV-WT-FC; PV-WT-battery; PV-battery; WT-battery; PV-FC; WT-FC | Battery | Power |
Mousavi [20] | PV-WT-battery-bio-generator | Battery | Power |
Das [21] | PV-WT-DG-electrolyzer-FC | Hydrogen storage | Power |
HassanzadehFard [22] | PV-WT-battery-FC-Steam Methane Reforming | Battery | Power |
Koholé [23] | PV-WT-battery; PV-battery; WT-battery; PV-WT-FC; PV-FC; WT-FC | Battery; Hydrogen storage | Power |
Shao [24] | PV-WT-electrolyzer-FC-CCHP-Solar thermal collector | Battery; Hydrogen storage; Thermal storage; | Power; Heating; Cooling |
Shahsavari [25] | PV-WT-DG-CHP-battery-water desalination unit | Battery | Power; Heating; Water |
Zhao [26] | PV-WT-Air energy storage | Air energy storage | Power |
Ref. | Configuration | Energy Supply | Comparison |
---|---|---|---|
Rajbongshi [27] | PV-biomass gasifier-DG-grid | Power | The cost is less in comparison to an off-grid hybrid system for similar load profiles. |
Zhang [28] | PV-internal combustion engine-heat pump-biomass boiler-grid | Power; heating; biogas | - |
Ju [29] | PV-WT-hydropower-pyrolysis power generation-grid | Power; heating; biogas | The cost of an off-grid system increases by 7.60%. |
Zhang [30] | Pumped storage turbine-WT-grid | Power | - |
Yu [31] | WT-PV-bio-generator-grid | Power | - |
Kasaeian [32] | PV-bio-generator-DG-grid | Power | - |
Odou [33] | PV-DG-battery-grid | Power | The off-grid system is more economical than the grid extension. |
Mousavi [34] | PV-WT-hydropower-bio-generator-DG-desalination unit-grid | Power | The off-grid hybrid energy system is the most cost-effective option. |
Demirci [35] | PV-WT-DG-bio-generator-grid | Power | Difference in the advantages of off-grid and grid-connected systems with changes in operating parameters. |
Ullah [36] | PV-WT-hydropower-bio-generator-battery-grid | Power | PV-hydropower-battery-grid system is the best economic grid-connected configuration, the PV-hydropower- bio-generator-battery is the most economic off-grid system. |
Jain [37] | PV-WT-DG-hydropower-battery-grid | Power | Grid-connected systems show better economics. |
Jahangiri [38] | PV-WT-DG-electrolyzer-grid | Power; Hydrogen | - |
Country | Papers | Number of Productive | Hot Article | Citations | Quality | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Count | Percentage | Author | Institute | Number | Citation | Total | Average | h-index | Total IF | AIF | |
India | 206 | 22.51% | 9 | 14 | 25 | 3160 | 5295 | 25.70 | 39 | 845.3 | 4.10 |
China | 169 | 18.47% | 5 | 15 | 6 | 587 | 2386 | 14.12 | 27 | 974.8 | 5.77 |
Iran | 62 | 6.78% | 4 | 6 | 13 | 1529 | 2111 | 34.05 | 21 | 358.5 | 5.78 |
Malaysia | 57 | 6.23% | 0 | 5 | 12 | 1870 | 2447 | 42.93 | 20 | 239.5 | 4.20 |
United Kingdom | 48 | 5.25% | 0 | 1 | 7 | 1049 | 1635 | 34.06 | 19 | 330.4 | 6.88 |
United States | 46 | 5.03% | 0 | 1 | 5 | 588 | 1359 | 29.54 | 21 | 269.8 | 5.87 |
Saudi Arabia | 45 | 4.92% | 2 | 3 | 4 | 611 | 1410 | 31.33 | 23 | 206.4 | 4.59 |
Nigeria | 43 | 4.70% | 1 | 4 | 8 | 1051 | 1531 | 35.60 | 17 | 133.6 | 3.11 |
Egypt | 41 | 4.48% | 1 | 9 | 5 | 608 | 1174 | 28.63 | 18 | 201.4 | 4.91 |
Spain | 37 | 4.04% | 1 | 3 | 5 | 463 | 864 | 23.35 | 14 | 236.3 | 6.39 |
Institute | Country | Papers | Productive Author | Hot Article | Citations | Quality | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Count | Percentage | Number | Citation | Total | Average | H-Index | Total IF | AIF | |||
University of Tehran | Iran | 26 | 2.84% | 3 | 8 | 1019 | 1216 | 46.77 | 13 | 200.6 | 7.72 |
Indian Institute of Technology | India | 22 | 2.40% | 4 | 6 | 583 | 853 | 38.77 | 14 | 132.3 | 6.01 |
North China Electric Power University | China | 17 | 1.86% | 0 | 0 | 0 | 170 | 10 | 8 | 131.4 | 7.73 |
Tsinghua University | China | 15 | 1.64% | 3 | 1 | 147 | 281 | 18.73 | 8 | 80.2 | 5.35 |
Universitat Politécnica de Catalunya | Spain | 14 | 1.53% | 1 | 3 | 326 | 469 | 33.50 | 8 | 88.5 | 6.32 |
University of Johannesburg | South Africa | 13 | 1.42% | 1 | 3 | 416 | 545 | 41.92 | 7 | 62.1 | 4.78 |
Universiti of Malaya | Kuala Lumpur | 13 | 1.42% | 0 | 8 | 1435 | 1501 | 115.46 | 10 | 82.8 | 6.37 |
Department of Hydro and Renewable Energy | India | 13 | 1.42% | 1 | 6 | 583 | 738 | 56.77 | 11 | 79.5 | 6.12 |
Vellore Institute of Technology | India | 12 | 1.31% | 0 | 0 | 0 | 66 | 5.50 | 5 | 44.7 | 3.73 |
Universiti Teknologi Malaysia | Malaysia | 12 | 1.31% | 0 | 1 | 71 | 199 | 16.58 | 6 | 20.3 | 1.69 |
Author | Institute | Papers | Citations | Hot Article | Quality | ||||
---|---|---|---|---|---|---|---|---|---|
Total | AC | Number | Citation | H-Index | Total IF | AIF | |||
Ashraf I. [47] | Aligarh Muslim University, India | 10 | 89 | 8.90 | 0 | 0 | 6 | 46.8 | 4.68 |
Kamal M.M. [69] | Aligarh Muslim University, India | 9 | 80 | 8.89 | 0 | 0 | 5 | 39.1 | 4.34 |
Fernandez E. [70] | Indian Institute of Technology Roorkee, India | 8 | 76 | 9.50 | 0 | 0 | 5 | 49.9 | 6.24 |
Ferrer-Martí L. [71] | Universitat Politécnica de Catalunya, Spain | 7 | 191 | 27.29 | 1 | 100 | 5 | 48.3 | 6.90 |
Kasaeian A.B. [68] | University of Tehran, Iran | 7 | 145 | 20.71 | 1 | 89 | 6 | 66.2 | 9.46 |
Maleki A. [72] | Shahrood University of Technology, Iran | 7 | 280 | 40 | 2 | 210 | 5 | 38.3 | 5.47 |
Saini R.P. [67] | Indian Institute of Technology Roorkee, India | 7 | 443 | 63.29 | 4 | 385 | 7 | 47.2 | 6.74 |
Journal | Papers | Citations | Quality | |||
---|---|---|---|---|---|---|
Count | Percentage | Total | Average | H-Index | IF | |
Energies | 69 | 7.54% | 739 | 10.71 | 14 | 3.2 |
Energy | 59 | 6.45% | 3348 | 56.75 | 30 | 9 |
Renewable Energy | 50 | 5.46% | 3543 | 70.86 | 29 | 8.7 |
Energy Conversion and Management | 45 | 4.92% | 2195 | 48.78 | 19 | 10.4 |
Applied Energy | 33 | 3.61% | 1813 | 54.94 | 18 | 11.2 |
International Journal of Renewable Energy Research | 28 | 3.06% | 484 | 17.29 | 15 | 1 |
Sustainability | 25 | 2.73% | 383 | 15.32 | 10 | 3.9 |
Sustainable Energy Technologies and Assessments | 24 | 2.62% | 733 | 30.54 | 14 | 8 |
Journal of Cleaner Production | 22 | 2.40% | 1211 | 55.05 | 15 | 11.1 |
Energy Reports | 21 | 2.30% | 451 | 21.48 | 9 | 5.2 |
Keywords | Frequency | Centrality |
---|---|---|
rural areas | 412 | 0.09 |
renewable energy | 355 | 0.11 |
costs | 275 | 0.11 |
optimization | 238 | 0.09 |
hybrid energy system | 227 | 0.10 |
economic analysis | 182 | 0.08 |
rural electrification | 179 | 0.03 |
solar energy | 146 | 0.06 |
sensitivity analysis | 143 | 0.06 |
solar power generation | 129 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, A.; Li, Z.; Liu, P. Rural Integrated Energy System Based on Bibliometric Analysis: A Review of Recent Progress. Processes 2024, 12, 176. https://doi.org/10.3390/pr12010176
Yu A, Li Z, Liu P. Rural Integrated Energy System Based on Bibliometric Analysis: A Review of Recent Progress. Processes. 2024; 12(1):176. https://doi.org/10.3390/pr12010176
Chicago/Turabian StyleYu, Aofang, Zheng Li, and Pei Liu. 2024. "Rural Integrated Energy System Based on Bibliometric Analysis: A Review of Recent Progress" Processes 12, no. 1: 176. https://doi.org/10.3390/pr12010176
APA StyleYu, A., Li, Z., & Liu, P. (2024). Rural Integrated Energy System Based on Bibliometric Analysis: A Review of Recent Progress. Processes, 12(1), 176. https://doi.org/10.3390/pr12010176