CO2-Enhanced Radial Borehole Development of Shale Oil: Production Simulation and Parameter Analysis
Abstract
:1. Introduction
2. CO2-Enhanced Radial Borehole Method
3. Numerical Model
3.1. Composition Model
3.2. CO2-Enhanced Radial Borehole Model
3.3. Model Validation
4. Results and Discussion
4.1. Effect of Initial Reservoir Pressure
4.2. Effect of Permeability
4.3. Effect of Radial Borehole Length and Radius
4.4. Effect of Radial Borehole Branch Number and Phase Angle
4.5. Comparison with Horizontal Well Hydraulic Fracturing Methods
5. Conclusions and Discussions
- At a consistent CO2 injection rate, lower initial reservoir pressures increase the likelihood of immiscible displacement in CO2-driven crude oil extraction, leading to more rapid CO2 gas breakthroughs. Consequently, in radial borehole CO2-enhanced shale oil development, it is recommended to sustain higher initial development or injection pressures to ensure miscible displacement. In scenarios where maintaining the CO2 injection pressure is challenging, the feasibility of alternate CO2–N2 injection methods could be considered, which warrants further investigation in future studies;
- The adsorption of CO2 in shale oil reservoirs facilitates the release of lighter hydrocarbon components, as it competitively adsorbs these elements. While the diffusion of CO2 can lead to earlier gas channeling, this effect is counterbalanced by its migration towards areas of lower concentration at the reservoir boundary. This migration, driven not just by the pressure gradient but also by diffusion, results in a reduction in the extent of CO2 gas channeling compared to scenarios where diffusion is not taken into account;
- In cases where the reservoir permeability falls below 0.01 mD, the production yield from radial borehole CO2-enhanced shale oil development is notably low. Hence, it is advisable to select deployment locations within high-permeability “sweet spots” of shale oil reservoirs for this method. To enhance production, employing radial boreholes with greater lengths and larger diameters is beneficial. Alternatively, increasing the number of radial boreholes and adjusting the phase angle to 0° can also be effective strategies;
- In our future work, we will further explore the impact of CO2-induced asphaltene precipitation, the alteration of surface tension by CO2, and the hysteresis effects of CO2 injection on the effectiveness of CO2-enhanced radial borehole development techniques for shale oil extraction. Additionally, we plan to conduct laboratory experiments and field tests to further substantiate the feasibility of our methods and the precision of our models.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yolcan, O.O. World energy outlook and state of renewable energy: 10-Year evaluation. Innov. Green Dev. 2023, 2, 100070. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, G.; Wang, Z.; Wen, Z.; Tian, Z.; Wang, H.; Ma, F.; Wu, Y. Distribution and potential of global oil and gas resources. Pet. Explor. Dev. 2018, 45, 779–789. [Google Scholar] [CrossRef]
- Wang, H.; Ma, F.; Tong, X.; Liu, Z.; Zhang, X.; Wu, Z.; Li, D.; Wang, B.; Xie, Y.; Yang, L. Assessment of global unconventional oil and gas resources. Pet. Explor. Dev. 2016, 43, 925–940. [Google Scholar] [CrossRef]
- Yang, L.; Jin, Z. Global shale oil development and prospects. China Pet. Explor. 2019, 24, 553–559. [Google Scholar]
- Alfi, M.; Barrufet, M.; Killough, J. Effect of pore sizes on composition distribution and enhance recovery from liquid shale—Molecular sieving in low permeability reservoirs. Fuel 2019, 235, 1555–1564. [Google Scholar] [CrossRef]
- Chen, C.; Balhoff, M.; Mohanty, K.K. Effect of reservoir heterogeneity on improved shale oil recovery by CO2 huff-n-puff. In Proceedings of the SPE Unconventional Resources Conference/Gas Technology Symposium, The Woodlands, TX, USA, 4–6 February 2013; p. SPE-164553. [Google Scholar]
- Wu, S.; Fang, S.; Ji, L.; Wen, F.; Sun, Z.; Yan, S.; Li, Y. Transport Behavior of Methane Confined in Nanoscale Porous Media: Impact of Pore Evolution Characteristics. Processes 2022, 10, 2746. [Google Scholar] [CrossRef]
- Yu, H.; Xu, H.; Fu, W.; Lu, X.; Chen, Z.; Qi, S.; Wang, Y.; Yang, W.; Lu, J. Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel 2021, 285, 118977. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y.; Zhao, Q.; Gong, H.; Sang, Q.; Zou, H.; Dong, M. Experimental study and simulation of CO2 transfer processes in shale oil reservoir. Int. J. Coal Geol. 2018, 191, 24–36. [Google Scholar] [CrossRef]
- Boak, J.; Kleinberg, R. Shale gas, tight oil, shale oil and hydraulic fracturing. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–95. [Google Scholar]
- Xu, Y.; Sheng, G.; Zhao, H.; Hui, Y.; Zhou, Y.; Ma, J.; Rao, X.; Zhong, X.; Gong, J. A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs. J. Pet. Sci. Eng. 2021, 199, 108292. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhou, L.; Lei, Z.; Guo, L.; Zhou, J. Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China. Renew. Energy 2022, 183, 330–350. [Google Scholar] [CrossRef]
- Freyman, M. Hydraulic Fracturing & Water Stress: Water Demand by the Numbers; Ceres: Boston, MA, USA, 2014. [Google Scholar]
- Sanaei, A.; Shakiba, M.; Varavei, A.; Sepehrnoori, K. Mechanistic Modeling of Clay Swelling in Hydraulic–Fractures Network. SPE Reserv. Eval. Eng. 2018, 21, 96–108. [Google Scholar] [CrossRef]
- Wachtmeister, H.; Lund, L.; Aleklett, K.; Höök, M. Production decline curves of tight oil wells in eagle ford shale. Nat. Resour. Res. 2017, 26, 365–377. [Google Scholar] [CrossRef]
- Wood, T.; Milne, B. Waterflood Potential Could Unlock Billions of Barrels: Crescent Point Energy; Dundee Securities Ltd.: Toronto, ON, Canada, 2011. [Google Scholar]
- Ji, Z.; Zhao, J.; Chen, X.; Gao, Y.; Xu, L.; He, C.; Ma, Y.; Yao, C. Three-Dimensional Physical Simulation of Horizontal Well Pumping Production and Water Injection Disturbance Assisted CO2 Huff and Puff in Shale Oil Reservoir. Energies 2022, 15, 7220. [Google Scholar] [CrossRef]
- Sheng, J.J.; Chen, K. Evaluation of the EOR potential of gas and water injection in shale oil reservoirs. J. Unconv. Oil Gas Resour. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Celia, M.A.; Bachu, S.; Nordbotten, J.M.; Bandilla, K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar] [CrossRef]
- Celia, M.A. Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water Resour. Res. 2017, 53, 3527–3533. [Google Scholar] [CrossRef]
- Saini, D. CO2-Reservoir Oil Miscibility: Experimental and Non-Experimental Characterization and Determination Approaches; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Zhang, K.; Jia, N.; Li, S.; Liu, L. Static and dynamic behavior of CO2 enhanced oil recovery in shale reservoirs: Experimental nanofluidics and theoretical models with dual-scale nanopores. Appl. Energy 2019, 255, 113752. [Google Scholar] [CrossRef]
- Wang, R.; Bi, S.; Guo, Z.; Feng, G. Molecular insight into replacement dynamics of CO2 enhanced oil recovery in nanopores. Chem. Eng. J. 2022, 440, 135796. [Google Scholar] [CrossRef]
- Li, B.; Zheng, L.; Cao, A.; Bai, H.; Zhang, C.; Li, Z. Effect of interaction between CO2 and crude oil on the evolution of interface characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129043. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Peng, B.; Lin, M.; Dong, Z. Volume expansion of CO2 + oil at near critical and supercritical conditions of CO2. Fuel 2013, 112, 283–288. [Google Scholar] [CrossRef]
- Li, H.; Zheng, S.; Yang, D. Enhanced swelling effect and viscosity reduction of solvent(s)/CO2/heavy-oil systems. SPE J. 2013, 18, 695–707. [Google Scholar] [CrossRef]
- Yang, D.; Tontiwachwuthikul, P.; Gu, Y. Interfacial tensions of the crude oil + reservoir brine + CO2 systems at pressures up to 31 MPa and temperatures of 27 °C and 58 °C. J. Chem. Eng. Data 2005, 50, 1242–1249. [Google Scholar] [CrossRef]
- Kumar, N.; Sampaio, M.A.; Ojha, K.; Hoteit, H.; Mandal, A. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review. Fuel 2022, 330, 125633. [Google Scholar] [CrossRef]
- Abedini, A.; Torabi, F. On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery. Fuel 2014, 124, 14–27. [Google Scholar] [CrossRef]
- Zhou, X.; Yuan, Q.; Peng, X.; Zeng, F.; Zhang, L. A critical review of the CO2 huff ‘n’ puff process for enhanced heavy oil recovery. Fuel 2018, 215, 813–824. [Google Scholar] [CrossRef]
- Stalkup, F. Carbon dioxide miscible flooding: Past, present, and outlook for the future. J. Pet. Technol. 1978, 30, 1102–1112. [Google Scholar] [CrossRef]
- Dai, J.; Zheng, Z.; Wang, T.; Li, G. Productivity and Cost Comparison between Radial-Borehole Fracturing and Horizontal Well Fracturing in Shale Oil Reservoir. In Proceedings of the Gas & Oil Technology Showcase and Conference, Dubai, United Arab Emirates, 13–15 March 2023; OnePetro: Richardson, TX, USA, 2023. [Google Scholar]
- Chase, C.A.; Todd, M.R. Numerical simulation of CO2 flood performance. Soc. Pet. Eng. J. 1984, 24, 597–605. [Google Scholar] [CrossRef]
- Edouard, M.N.; Okere, C.J.; Ejike, C.; Dong, P.; Suliman, M.A. Comparative numerical study on the co-optimization of CO2 storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Appl. Energy 2023, 347, 121448. [Google Scholar] [CrossRef]
- Kim, M.; Kwon, S.; Ji, M.; Shin, H.; Min, B. Multi-lateral horizontal well with dual-tubing system to improve CO2 storage security and reduce CCS cost. Appl. Energy 2023, 330, 120368. [Google Scholar] [CrossRef]
- Enab, K.; Ertekin, T. Screening and optimization of CO2-WAG injection and fish-bone well structures in low permeability reservoirs using artificial neural network. J. Pet. Sci. Eng. 2021, 200, 108268. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Li, G.; Huang, Z.; Dai, J.; Cheng, K. Field test of radial jet drilling technology in a surface formation. J. Pet. Sci. Eng. 2022, 218, 110928. [Google Scholar] [CrossRef]
- Blöcher, G.; Peters, E.; Reinsch, T.; Petrauskas, S.; Valickas, R.; van den Berg, S. D3.2 Report on Radial Jet-Drilling (RJD) Stimulation Technology; German Research Centre for Geosciences: Postdam, Germany, 2016. [Google Scholar]
- Kamel, A.H. A technical review of radial jet drilling. J. Pet. Gas Eng. 2017, 8, 79–89. [Google Scholar]
- Tian, Y.; Xiong, Y.; Wang, L.; Lei, Z.; Zhang, Y.; Yin, X.; Wu, Y.-S. A compositional model for gas injection IOR/EOR in tight oil reservoirs under coupled nanopore confinement and geomechanics effects. J. Nat. Gas Sci. Eng. 2019, 71, 102973. [Google Scholar] [CrossRef]
- Fussell, L.T.; Fussell, D.D. An iterative technique for compositional reservoir models. Soc. Pet. Eng. J. 1979, 19, 211–220. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Z.; Wang, B.; Liao, X.; Li, D.; Zhou, B. A Multi-medium and Multi-mechanism model for CO2 injection and storage in fractured shale gas reservoirs. Fuel 2023, 345, 128167. [Google Scholar] [CrossRef]
- Møyner, O.; Tchelepi, H. A multiscale restriction-smoothed basis method for compositional models. In Proceedings of the SPE Reservoir Simulation Conference, Montgomery, TX, USA, 20–22 February 2017; p. D031S009R003. [Google Scholar]
- Zhong, Y.; She, J.; Zhang, H.; Kuru, E.; Yang, B.; Kuang, J. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales. Fuel 2019, 258, 116123. [Google Scholar] [CrossRef]
- Ambrose, R.J.; Hartman, R.C.; Akkutlu, I.Y. Multi-component sorbed-phase considerations for shale gas-in-place calculations. In Proceedings of the SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium, Oklahoma City, OK, USA, 23–26 March 2011; p. SPE-141416. [Google Scholar]
- Yang, S.; Wu, K.; Xu, J.; Li, J.; Chen, Z. Roles of multicomponent adsorption and geomechanics in the development of an Eagle Ford shale condensate reservoir. Fuel 2019, 242, 710–718. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, J.J. Effect of low-velocity non-Darcy flow on well production performance in shale and tight oil reservoirs. Fuel 2017, 190, 41–46. [Google Scholar] [CrossRef]
- Xu, J.; Wu, K.; Yang, S.; Cao, J.; Chen, Z.; Pan, Y.; Yan, B. Real gas transport in tapered noncircular nanopores of shale rocks. AIChE J. 2017, 63, 3224–3242. [Google Scholar] [CrossRef]
- Beskok, A.; Karniadakis, G.E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 1999, 3, 43–77. [Google Scholar]
- Rangarajan, R.; Mazid, M.; Matsuura, T.; Sourirajan, S. Permeation of pure gases under pressure through asymmetric porous membranes. Membrane characterization and prediction of performance. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 79–87. [Google Scholar] [CrossRef]
- Civan, F. Porous Media Transport Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Civan, F. Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 2010, 82, 375–384. [Google Scholar] [CrossRef]
- Peaceman, D.W. Fundamentals of Numerical Reservoir Simulation; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Lie, K.-A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST); Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Møyner, O.; Lie, K. Advanced Modelling with the MATLAB Reservoir Simulation Toolbox (MRST); Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Yu, W.; Zhang, Y.; Varavei, A.; Sepehrnoori, K.; Zhang, T.; Wu, K.; Miao, J. Compositional simulation of CO2 huff ‘n’ puff in Eagle Ford tight oil reservoirs with CO2 molecular diffusion, nanopore confinement, and complex natural fractures. SPE Reserv. Eval. Eng. 2019, 22, 492–508. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Jiang, C.; Lu, S.; Li, Z. Sorption model of lacustrine shale oil: Insights from the contribution of organic matter and clay minerals. Energy 2022, 260, 125011. [Google Scholar] [CrossRef]
- Peng, Z.; Sheng, J. Diffusion Effect on Shale Oil Recovery by CO2 Huff-n-Puff. Energy Fuels 2023, 37, 2774–2790. [Google Scholar] [CrossRef]
- Li, L.; Hao, Y.; Lv, Y.; Wang, C.; Yao, C.; Zhao, Q.; Xiao, P. Experimental investigation on low-velocity seepage characteristics and influencing factors in a shale oil reservoir. J. Pet. Sci. Eng. 2020, 195, 107732. [Google Scholar] [CrossRef]
- Xu, J.; Wu, K.; Li, R.; Li, Z.; Li, J.; Xu, Q.; Li, L.; Chen, Z. Nanoscale pore size distribution effects on gas production from fractal shale rocks. Fractals 2019, 27, 1950142. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Reservoir radius, m | 200 | Matrix compressibility, barsa | 1 × 105 |
Reservoir thickness, m | 50 | Gas density (STP), kg/m3 | 2.76 |
Tortuosity | 2 | Oil density (STP), kg/m3 | 887.97 |
Reservoir pressure, MPa | 56.02 | Kr coefficient | 2 |
Reservoir temp, K | 405.372 | Oil viscosity (underground), cp | 0.8 |
Permeability, mD | 0.1 | Oil saturation, % | 58 |
CO2 | N2 | C1 | C2–C6 | C6–C10 | C11+ | |
---|---|---|---|---|---|---|
D, 10−9 m2/s | 2.91 | 4.13 | 4.13 | 1.27 | 0.58 | 0.36 |
PL, MPa | 5.76 | 12.41 | 10.76 | 5.82 | 2.07 | 1.38 |
ρSL, kg/m3 | 7.77 | 1.61 | 3.00 | 9.59 | 10.18 | 10.71 |
Parameters | Value | Unit |
---|---|---|
Fracture length | 70 | m |
Fracture height | 20 | m |
Fracture width | 0.003 | m |
Fracture porosity | 0.3 | |
Fracture permeability | 200 | Darcy |
Drilling cost of a horizontal well | 2.2 | USD M/per |
Drilling cost of a vertical well | 0.8 | USD M/per |
Drilling cost of a radial borehole | 0.028 | USD M/per |
Fracturing cost per stage | 0.486 | USD M/per |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Tian, K.; Xue, Z.; Ren, S.; Wang, T.; Li, J.; Tian, S. CO2-Enhanced Radial Borehole Development of Shale Oil: Production Simulation and Parameter Analysis. Processes 2024, 12, 116. https://doi.org/10.3390/pr12010116
Dai J, Tian K, Xue Z, Ren S, Wang T, Li J, Tian S. CO2-Enhanced Radial Borehole Development of Shale Oil: Production Simulation and Parameter Analysis. Processes. 2024; 12(1):116. https://doi.org/10.3390/pr12010116
Chicago/Turabian StyleDai, Jiacheng, Kangjian Tian, Zongan Xue, Shuheng Ren, Tianyu Wang, Jingbin Li, and Shouceng Tian. 2024. "CO2-Enhanced Radial Borehole Development of Shale Oil: Production Simulation and Parameter Analysis" Processes 12, no. 1: 116. https://doi.org/10.3390/pr12010116
APA StyleDai, J., Tian, K., Xue, Z., Ren, S., Wang, T., Li, J., & Tian, S. (2024). CO2-Enhanced Radial Borehole Development of Shale Oil: Production Simulation and Parameter Analysis. Processes, 12(1), 116. https://doi.org/10.3390/pr12010116