Water-Energy-Environment Nexus Analysis Tools: Case Study for Canary Islands
Abstract
:1. Introduction
- WEAP and LEAP [23,24]. WEAP is a model designed to forecast water inflows and outflows. This tool also considers water quality or the preservation of ecosystems, although it is complex and needs especially high data. WEAP can also be integrated with LEAP to conduct WE analysis. Authors such as Siddiqi, Kajenthira, Anadón [25] and Chiu and Wu [26] analyzed different regions and highlighted that, due to data extensiveness, the complexity of the study increased.
- Climate, Land-use, Energy, and Water (CLEW) [27] is used to forecast and analyze scenarios. It integrates the energy models LEAP, WEAP [23,24], and the Global Agro-Ecological Zoning Model (GAEZ) [27,28]. This tool uses the Open-Source Energy Modelling System (OSeMOSYS) [29] that has been also applied to policy making.
- MARKet Allocation (MARKAL) [30] is a mathematical model generator that creates an energy model based on real and accurate data with a time horizon from 20 to 100 years. This tool evolved into the embedded MARKAL-EFOM (Energy Flow Optimization Model) system known as TIMES [31]. MARKAL is used for energy modeling, capturing energy complexities, showing time projections, and evaluating long-term sustainability goals, although it needs extensive data inputs, being inappropriate for planning in the short term [32]. In addition, FAO developed MuSIASEM—The Flow-Fund Model [33] that studies the socio-ecological behavior of societies, assuming that they interact in a system. As an analysis tool, it offers a quick overview of a current metabolic process in a society [34]. MuSIASEM offers quantitative information to discuss limitations provoked by humans, and others that are not under human control, on viability, in order to describe the existence of natural resources [35]. Serrano-Tovar et al. [36] highlighted the capacity of MuSIASEM to investigate the sustainability of nexus systems. From periods of economic downturn [37] to the study of oil extraction [38], this tool has been used to forecast the energy metabolism of systems. These tools rely on indicators as well as extensive data to forecast the consequences these actions have on the system.
2. Water-Energy-Environment Management Concepts
2.1. Use of Indicators
2.2. Water-Energy-Environment Nexus Analysis Tool
3. Case Study
3.1. Water-Energy-Environment Nexus Sustainability Index for the Case Study
3.2. System Analysis
3.3. Alternative Electric Power Generation Schemes
3.4. Sustainability Index Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AS | Acceptable Stress |
BS | Baseline Stress |
CC | Gas combined cycle power station |
CLEWs | Climate, Land-use, Energy-Water |
DEA | Data Envelopment Analysis |
EFOM | Energy Flow Optimization Model |
FAO | Food and Agriculture Organization of the United Nations |
FEN | Forecasted Energy Needs |
GAEZ | Global Agro-Ecological Zoning Model |
GHG | Green House Gas |
IAEA | International Atomic Energy Agency |
IRENA | International Renewable Energy Agency |
IS | Incremental Stress |
LEAP | Long Range Alternatives Planning System |
LCA | Life Cycle Assessment |
MARKAL | Market Allocation |
MENA | Mediterranean and north Africa |
MFA | Material Flow Analysis |
MuSIASEM | Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism |
OSeMOSYS | Open-Source Energy Modelling System |
QST | Quantitative Story-Telling |
PHS | Pumping Hydro Storage |
PV | Photovoltaic |
RE | Renewable Energy |
RSEI | Remote Sensing Ecological Index |
SDGs | Sustainable Development Goals |
UN | United Nations |
UNECE | United Nations Economic Commission for Europe |
VT | Vapor Turbine |
WEAP-LEAP | Water Evaluation and Planning System |
WE | Water, Energy |
WEF | Water, Energy, and Food |
WW | Water Withdrawals |
References
- ASDaher, B.T.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Crosson, P. World Agriculture: Toward 2000, an FAO Study. Agric. Econ. 1996, 14, 61–63. [Google Scholar] [CrossRef]
- Folke, C.; Polasky, S.; Rockström, J.; Galaz, V.; Westley, F.; Lamont, M.; Scheffer, M.; Österblom, H.; Carpenter, S.R.; Chapin, F.S.; et al. Our future in the Anthropocene biosphere. Ambio 2021, 50, 834–869. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C. Complexity and diversity of nexuses: A review of the nexus approach in the sustainability context. Sci. Total Environ. 2023, 854, 158612. [Google Scholar] [CrossRef]
- Oxford Dictionary (ed.) ‘Nexus’, Oxford’s Lexico. 2021. Available online: https://www.oed.com/ (accessed on 22 March 2023).
- Sachs, I.; Silk, D. Food and Energy: Strategies for Sustainable Development; United Nations University Press: Tokyo, Japan, 1990. [Google Scholar]
- De Laurentiis, V.; Hunt, D.; Rogers, C. Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach. Sustainability 2016, 8, 95. [Google Scholar] [CrossRef]
- Li, Z.; Ye, W.; Jiang, H.; Song, H.; Zheng, C. Impact of Eco-Efficiency of Food Production on the Water-Land-Food System Coordination in China: Discussion on the Moderation Effect of Environmental Regulation. Sci. Total. Environ. 2022, 857, 159641. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiang, Z.; Jing, X.; Joseph, S.; Jun, X.; Haifeng, J. Water-Energy-Environment Nexus under Different Urbanization Patterns: A Sensitivity-Based Framework for Identifying Key Feedbacks. J. Clean. Prod. 2023, 408, 137243. [Google Scholar] [CrossRef]
- IEA—International Energy Agency (No Date) IEA. Available online: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview;%202020 (accessed on 22 December 2022).
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn 2011; In Proceedings of The Water, Energy and Food Security Nexu; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Borge-Diez, D.; García-Moya, F.J.; Rosales-Asensio, E. Water Energy Food Nexus Analysis and Management Tools: A Review. Energies 2022, 15, 1146. [Google Scholar] [CrossRef]
- EU Resource Efficiency Scoreboard. 2015. Available online: https://ec.europa.eu/environment/resource_efficiency/targets_indicators/scoreboard/pdf/EU%20Resource%20Efficiency%20Scoreboard%202015.pdf (accessed on 22 March 2023).
- Cabello, V.; Romero, D.; Musicki, A.; Guimarães Pereira, Â.; Peñate, B. Co-creating narratives for WEF nexus governance: A Quantitative Story-Telling case study in the Canary Islands. Sustain. Sci. 2021, 16, 1363–1374. [Google Scholar] [CrossRef]
- Lodge, J.; Dansie, A.; Johnson, F. A Review of Globally Available Data Sources for Modelling the Water-Energy-Food Nexus. Earth Sci. Rev. 2023, 243, 104485. [Google Scholar] [CrossRef]
- Hanqiu, X. A remote sensing urban ecological index and its application. Act. Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar] [CrossRef]
- An, M.; Ping, X.; Weijun, H.; Bei, W.; Jin, H.; Ribesh, K. Spatiotemporal Change of Ecologic Environment Quality and Human Interaction Factors in Three Gorges Ecologic Economic Corridor, Based on RSEI. Ecol. Ind. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Wang, K.; Bi, J. China’s energy-water nexus: Spillover effects of energy and water policy. Glob. Environ. Chang. 2016, 40, 92–100. [Google Scholar] [CrossRef]
- Fæhn, T. A shaft of light into the black box of CGE analyses of tax reforms. Econ. Model. 2015, 49, 320–330. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Berger, L.; Henry, A.D.; Pivo, G. Orienteering the landscape of urban water sustainability indicators. Environ. Sustain. Indic. 2023, 17, 100207. [Google Scholar] [CrossRef]
- Kaddoura, S.; El Khatib, S. Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making. Environ. Sci. Policy 2017, 77, 114–121. [Google Scholar] [CrossRef]
- WEAP Water Evaluation And Planning System. Available online: https://www.weap21.org/downloads/WEAP_User_Guide.pdf (accessed on 19 March 2023).
- SEI (Stockholm Environment Institute), LEAP. Available online: https://www.sei.org/projects-and-tools/tools/leap-long-range-energy-alternatives-planning-system/ (accessed on 10 January 2023).
- Siddiqi, A.; Kajenthira, A.; Anadón, L.D. Bridging decision networks for integrated water and energy planning. Energ Strat. Rev. 2013, 2, 46–58. [Google Scholar] [CrossRef]
- Chiu, Y.-W.; Wu, M. Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels Bioprod. Biorefining 2013, 7, 406–415. [Google Scholar] [CrossRef]
- Climate, Land, Energy and Water Strategies (CLEWs). Available online: https://iea-etsap.org/workshop/zurich_wen_dec2017/Vignesh%20Sridharan.pdf (accessed on 9 March 2023).
- GAEZ Data Portal. Available online: https://gaez.fao.org (accessed on 1 March 2023).
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Technology Collaboration Programme. Available online: https://www.iea-etsap.org/index.php/edezshop/41_1 (accessed on 13 March 2023).
- MARKAL/TIMES EnergyPLAN. Available online: https://www.energyplan.eu/othertools/national/markaltimes/ (accessed on 22 December 2022).
- Prina, M.G.; Manzolini, G.; Moser, D.; Nastasi, B.; Sparber, W. Classification and challenges of bottom-up energy system models—A review. Renew. Sustain. Energy Rev. 2020, 129, 109917. [Google Scholar] [CrossRef]
- Inter-Regional Technical Platform on Water Scarcity (iRTP-WS). Available online: https://www.fao.org/platforms/water-scarcity/Knowledge/knowledge-products/detail/an-innovative-accounting-framework-for-the-food-energy-water-nexus-application-of-the-musiasem-approach-to-three-case-studies/en (accessed on 1 March 2023).
- Giampietro, M.; Food and Agriculture Organization of the United Nations (Eds.) An Innovative Accounting Framework for the Food-Energy-Water Nexus: Application of the MuSIASEM Approach to Three Case Studies; Environment and Natural Resources Management Paper, 56; Food and Agriculture Association of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Giampietro, M.; Aspinall, R.J.; Ramos-Martin, J.; Bukkens, S.G. (Eds.) Resource Accounting for Sustainability Assessment: The Nexus between Energy, Food, Water and Land Use; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Serrano-Tovar, T.; Penate Suarez, B.; Musicki, A.; de la Fuente Bencomo, J.A.; Cabello, V.; Giampietro, M. Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Sci. Total Environ. 2019, 689, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, V. A multiscale integrated analysis of the COVID-19 restrictions: The energy metabolism of UK and the related socio-economic changes. J. Clean. Prod. 2022, 363, 132616. [Google Scholar] [CrossRef]
- Parra, R.; Di Felice, L.J.; Giampietro, M.; Ramos-Martin, J. The metabolism of oil extraction: A bottom-up approach applied to the case of Ecuador. Energy Policy 2018, 122, 63–74. [Google Scholar] [CrossRef]
- FAO Food and Agriculture Organization of the Unite Nations (FAO). Available online: http://www.fao.org/home/en (accessed on 16 January 2023).
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef]
- Haghjoo, R.; Choobchian, S.; Morid, S.; Abbasi, E. Development and validation of management assessment tools considering water, food, and energy security nexus at the farm level. Environ. Sustain. Indic. 2022, 16, 100206. [Google Scholar] [CrossRef]
- Sun, D.; Shao, S.; Zhang, Y.; Yang, Q.; Hou, H.; Quan, X. Integrated Analysis of the Water–Energy–Environmental Pollutant Nexus in the Petrochemical Industry. Environ. Sci. Technol. 2020, 54, 14830–14842. [Google Scholar] [CrossRef]
- Yin, D.; Li, X.; Wang, F.; Liu, Y.; Croke, B.F.W.; Jakeman, A.J. Water-energy-ecosystem nexus modeling using multi-objective, non-linear programming in a regulated river: Exploring tradeoffs among environmental flows, cascaded small hydropower, and inter-basin water diversion projects. J. Environ. Manag. 2022, 308, 114582. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, S.; Manteiga, R.; Moreira, M.T.; Feijoo, G. Assessing the sustainability of Spanish cities considering environmental and socio-economic indicators. J. Clean. Prod. 2018, 178, 599–610. [Google Scholar] [CrossRef]
- Da Silva, L.; Marques Prietto, P.D.; Pavan Korf, E. Sustainability indicators for urban solid waste management in large and medium-sized worldwide cities. J. Clean. Prod. 2019, 237, 117802. [Google Scholar] [CrossRef]
- Simpson, G.B.; Jewitt, G.P.W. The Development of the Water-Energy-Food Nexus as a Framework for Achieving Resource Security: A Review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Zhang, X.; Vesselinov, V.V. Energy-water nexus: Balancing the tradeoffs between two-level decision makers. Appl. Energy 2016, 183, 77–87. [Google Scholar] [CrossRef]
- Goldstein, J.; Hazy, J.K.; Lichtenstein, B.M.B. Complexity and the Nexus of Leadership: Leveraging Nonlinear Science to Create Ecologies of Innovation, 1st ed.; Palgrave Macmillan: New York, NY, USA, 2011. [Google Scholar]
- UNECE: Deployment of Renewable Energy: The Water-Energy-Food-Ecosystems Nexus Approach to Support the SDGs. Available online: https://unece.org/fileadmin/DAM/env/water/publications/WAT_NONE_7_Deployment/060617_v3_FINAL_Deployment_of_renewable_energy-_The_water-energy-food-ecosystems_nexus_approach_to_support_the_SDGs_complete_LR_map-manually-corrected.pdf (accessed on 22 December 2022).
- Dargin, J.; Daher, B.; Mohtar, R.H. Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Sci. Total Environ. 2019, 650, 1566–1575. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; de la Puente-Gil, Á.; García-Moya, F.-J.; Blanes-Peiró, J.; de Simón-Martín, M. Decision-making tools for sustainable planning and conceptual framework for the energy–water–food nexus. Energy Rep. 2020, 6, 4–15. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Han, M.; Wang, G.; Hayat, T.; Chen, G. Energy-water nexus in seawater desalination project: A typical water production system in China. J. Clean. Prod. 2021, 279, 123412. [Google Scholar] [CrossRef]
- Borge-Diez, D.; García-Moya, F.J.; Rosales-Asensio, E. Comprehensive assessment of Gran Canaria water-energy-food nexus with GIS-based tool. J. Clean. Prod. 2021, 323, 129197. [Google Scholar] [CrossRef]
- Fry, J.; Lenzen, M.; Jin, Y.; Wakiyama, T.; Baynes, T.; Wiedmann, T.; Malik, A.; Chen, G.; Wang, Y.; Geschke, A.; et al. Assessing carbon footprints of cities under limited information. J. Clean. Prod. 2018, 176, 1254–1270. [Google Scholar] [CrossRef]
- American Petroleum Institute, 2021-API-GHG-Compendium. Available online: https://www.api.org/~/media/Files/Policy/ESG/GHG/2021-API-GHG-Compendium-110921.pdf (accessed on 3 December 2022).
- Stehly, T.; Beiter, P.; Duffy, P. 2019 Cost of Wind Energy Review; NREL/TP-5000-78471; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar] [CrossRef]
- Fu, R.; Feldman, D.J.; Margolis, R.M. U.S. Solar Photovoltaic System Cost Benchmark: Q1; NREL/TP-6A20-72399; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef]
- Heinonen, J.; Ottelin, J.; Ala-Mantila, S.; Wiedmann, T.; Clarke, J.; Junnila, S. Spatial consumption-based carbon footprint assessments—A review of recent developments in the field. J. Clean. Prod. 2020, 256, 120335. [Google Scholar] [CrossRef]
- Gobierno de Canarias. Anuario Energético de Canarias. Available online: http://www.gobiernodecanarias.org/ceic/energia/doc/Publicaciones/AnuarioEnergeticoCanarias/ANUARIO-ENERGETICO-CANARIAS-2016 (accessed on 8 March 2023).
- Consejo Insular de Aguas de Gran Canaria. Available online: http://www.aguasgrancanaria.com (accessed on 4 February 2023).
- Trubetskaya, A.; Horan, W.; Conheady, P.; Stockil, K.; Moore, S. A Methodology for Industrial Water Footprint Assessment Using Energy-Water-Carbon Nexus. Processes 2021, 9, 393. [Google Scholar] [CrossRef]
- Vanham, D. Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus? Ecosyst. Serv. 2016, 17, 298–307. [Google Scholar] [CrossRef]
- Borge-Diez, D.; García-Moya, F.J.; Cabrera-Santana, P.; Rosales-Asensio, E. Feasibility analysis of wind and solar powered desalination plants: An application to islands. Sci. Total. Environ. 2021, 764, 142878. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Asensio, E.; García Moya, F.J.; Gónzalez Martinez, A.; Borge Diez, D.; de Simón Martín, M. Stress Mitigation of Conventional Water Resources in Water-Scarce Areas through the use of Renewable Energy Powered Desalination Plants: An Application to the Canary Islands. Energy Rep. 2020, 6, 124–135. [Google Scholar] [CrossRef]
- Larsen, M.A.D.; Drews, M. Water use in electricity generation for water-energy nexus analyses: The European case. Sci. Total. Environ. 2019, 651, 2044–2058. [Google Scholar] [CrossRef]
- Zhang, Y.; Lingfeng, W. Comprehensive Reliability Evaluation of Water-Energy Nexus Systems. Energy Nexus 2022, 8, 100158. [Google Scholar] [CrossRef]
- Cabrera, P.; Lund, H.; Carta, J.A. Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy 2018, 162, 421–443. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; Rosales, A.-E.; Colmenar-Santos, A. Surrogate optimization of coupled energy sources in a desalination microgrid based on solar PV and wind energy. Desalination 2021, 500, 114882. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; Borge-Diez, D.; Blanes-Peiró, J.-J.; Pérez-Hoyos, A.; Colmenar-Santos, A. Review of wind energy technology and associated market and economic conditions in Spain. Renew. Sustain. Energy Rev. 2019, 101, 415–427. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Buendia-Esparcia, Á.; de Palacio-Rodríguez, C.; Borge-Diez, D. Water canal use for the implementation and efficiency optimization of photovoltaic facilities: Tajo-Segura transfer scenario. Sol. Energy 2016, 126, 168–194. [Google Scholar] [CrossRef]
- Lebel, L.; Lebel, B. Nexus narratives and resource insecurities in the Mekong Region. Environ. Sci. Policy 2018, 90, 164–172. [Google Scholar] [CrossRef]
- Chen, L.; Šimůnek, J.; Bradford, S.; Ajami, H.; Meles, M. A computationally efficient hydrologic modeling framework to simulate surface-subsurface hydrological processes at the hillslope scale. J. Hydrol. 2022, 614 Pt B, 128539. [Google Scholar] [CrossRef]
- Saltelli, A.; Giampietro, M. What is wrong with evidence-based policy, and how can it be improved? Futures 2017, 91, 62–67. [Google Scholar] [CrossRef]
Technology | Water Impact (m3/MWh) | Emissions Impacts (gCO2/kWhe) |
---|---|---|
Biomass Wet cooling Biomass for dedicated energy crops | 1.89–2.271 151.4–378.5 | 650 |
Natural gas Simple circuit Natural gas Combined cycle | 15.918 8.34 | 499 250 |
Solar Photovoltaic | 3.79 | 300 |
Wind | - | - |
Wind powered power plant (Onshore) | 0.985 | 123.7 |
TOTAL | 1826 |
Product | Baseline Scenario (Hm3) | Baseline Scenario (t CO2) |
---|---|---|
Tomatoes | 30.6 | 238 |
Potatoes | 7 | 14 |
Pork | 23.3 | 33.98 |
Chicken | 9.98 | 15.35 |
Apple/pear | 70 | 40 |
Banana | 68 | 59.5 |
Milk | 22 | 264 |
Human Consumption | 49.34 | |
Total consumption | 280.22 | 664.83 |
Assumption | Initial Ww (Hm3) | |
---|---|---|
Capacity of reservoirs | 100% of capacity | 78 |
100% Rainfall | In 37% of cultivable land | 173.16 |
Desalination plants | Capacity factor of the plant: 30% | 14.49 |
Total | 270.54 |
Energy Generation Technology | Installed Power (MW) | Energy Generated (GWh) | Ww (Hm3) | Baseline Scenario (t CO2) |
---|---|---|---|---|
Vapor Turbine | 438.27 | 1409.83 | 21.37 | 1,491,840 |
Combined Cycle | 481.28 | 1464.89 | 12.21 | 423,000 |
Wind Power | 154.3 | 248.97 | 0.245 | 2415.6 |
Solar Power | 41.5 | 57.53 | 0.22 | 20,700 |
Total | 1024 | 3181.2 | 34.04 | 1,937,955.6 |
Technology | 100% Wind to CC Ww (Hm3) | 50-50 Wind/Solar to CC Ww (Hm3) | 100% Solar to CC Ww (Hm3) | 100% Wind to ST Ww (Hm3) |
---|---|---|---|---|
Vapor turbine | 21.37 | 21.37 | 21.37 | 0 |
Combined cycle | 0 | 0 | 0 | 10.81 |
Wind power | 1.44 | 0.69 | 0.245 | 1.38 |
Solar power | 0.22 | 2.67 | 5.55 | 0.0002 |
Total | 23.03 | 24.73 | 27.16 | 12.19 |
Index | IS | BS | AS |
---|---|---|---|
Water index units | Hm3 | Hm3 | Hm3 |
Alternative EP | 314.26 | 270.54 | |
Emissions index | t of CO2 | (t of CO2) | t of CO2 |
Alternative EP | 1,616,253.23 | Legislator’s entry |
Energy Strategy | Incremental Water Use (Mill m3) | WI Change (%) | GHG Emission Reduction (t of CO2) |
---|---|---|---|
100% Wind to CC | 10.71 | 3.4 | 1120.89 |
50-50 Wind/Solar to CC | 8.81 | 2.8 | 960 |
100% Solar to CC | 8.11 | 2.6 | 686.8 |
100% Wind to VT | 10.71 | 6.2 | 2750.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borge-Diez, D.; García-Moya, F.J.; Rosales-Asensio, E. Water-Energy-Environment Nexus Analysis Tools: Case Study for Canary Islands. Processes 2023, 11, 2753. https://doi.org/10.3390/pr11092753
Borge-Diez D, García-Moya FJ, Rosales-Asensio E. Water-Energy-Environment Nexus Analysis Tools: Case Study for Canary Islands. Processes. 2023; 11(9):2753. https://doi.org/10.3390/pr11092753
Chicago/Turabian StyleBorge-Diez, David, Francisco José García-Moya, and Enrique Rosales-Asensio. 2023. "Water-Energy-Environment Nexus Analysis Tools: Case Study for Canary Islands" Processes 11, no. 9: 2753. https://doi.org/10.3390/pr11092753
APA StyleBorge-Diez, D., García-Moya, F. J., & Rosales-Asensio, E. (2023). Water-Energy-Environment Nexus Analysis Tools: Case Study for Canary Islands. Processes, 11(9), 2753. https://doi.org/10.3390/pr11092753