Photocatalytic Degradation of Neonicotinoid Insecticides over Perlite-Supported TiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Photocatalyst Preparation
2.2.1. Immobilisation by Impregnation (Cat-1)
2.2.2. Immobilisation by Impregnation with Water Glass (Cat-2)
2.2.3. Immobilisation by Sol-Gel Method (Cat-3)
2.2.4. Characterisation Techniques
2.2.5. Stability and Reusability of the Prepared Floating Photocatalysts
2.3. Experimental System and Performed Experiments
3. Results and Discussion
3.1. Characterisation of Photocatalyst
3.2. Design of Experiments (DoE)
3.3. Kinetics of Photocatalytic Acetamiprid Decomposition
3.4. Influence of Process Variables on Imidacloprid Degradation
3.5. Removal Efficiency Model
3.6. Stability and Reusability of the Perlite-Based TiO2 Photocatalyst
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gerot, P. Insecticides: Their route to entry, mechanism of transport and mode of action. Biol. Rev. 1983, 58, 233–274. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, F. Classification of insecticides. In Toxicology of Insecticides; Springer: New York, NY, USA, 1985; pp. 45–109. [Google Scholar]
- Available online: https://www.epa.gov/caddis-vol2/insecticides (accessed on 8 May 2023).
- Available online: https://www.britannica.com/technology/insecticide (accessed on 10 May 2023).
- Anadón, A.; Ares, I.; Martínez, M.; Martínez-Larrañaga, M.-R.; Martínez, M.-A. Neurotoxicity of neonicotinoids. In Advances in Neurotoxicology; Aschner, M., Costa, L.G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 167–207. [Google Scholar]
- Ensley, S.M. Neonicotinoids. In Veterinary Toxicology: Basic and Clinical Principles; Academic Press: Cambridge, MA, USA, 2018; pp. 521–524. ISBN 9780128114100. [Google Scholar]
- EFSA Panel on Plant Protection Products and their Residues (PPR); Jerez, A.H.; Adriaanse, P.; Berny, P.; Coja, T.; Duquesne, S.; Focks, A.; Marinovich, M.; Millet, M.; Pelkonen, O.; et al. Statement on the Active Substance Acetamiprid. EFSA J. 2022, 20, 7031. [Google Scholar]
- Wallace, D.R. Acetamiprid. In Encyclopaedia of Toxicology, 3rd ed.; 2014; pp. 30–32. Available online: https://shop.elsevier.com/books/T/A/9780123864550 (accessed on 8 May 2023).
- La Farré, M.; Pérez, S.; Cantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trend. Analyt. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Choi, H.; Al-Abed, S.R.; Dionysiou, D.D.; Stathatos, E.; Lianos, P. TiO2-based advanced oxidation nanotechnologies for water purification and reuse. In Sustainability Science and Engineering: Sustainable Water for the Future—Water Recycling versus Desalination; Escobar, I.I., Schafer, A.I., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2010; Chapter 8; Volume 2, pp. 229–254. [Google Scholar]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef]
- Zhang, Y.; Sillanpää, M. Modification of photocatalyst with enhanced photocatalytic activity for water treatment. In Advanced Water Treatment: Advanced Oxidation Processes; Sillanpää, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 5; pp. 289–366. [Google Scholar]
- Ibhadon, A.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- García-López, E.I.; Marcí, G. Preparation of photocatalysts by physical methodologies. In Materials Science in Photocatalysis; García-López, E.I., Palmisano, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Chapter 3; pp. 37–62. [Google Scholar]
- Akpan, U.G.; Hameed, B.H. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Wang, F.; Xia, M.; Chen, Q.; Ju, X. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J. Hazard. Mater. 2021, 420, 126613. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A Gen. 2013, 462, 178–195. [Google Scholar] [CrossRef]
- Cunha, L.D.; Kuznetsov, A.; Achete, C.A.; da Hora Machado, A.E.; Marques, M. Immobilised TiO2 on glass spheres applied to heterogeneous photocatalysis: Photoactivity, leaching and regeneration. PeerJ 2018, 6, e4464. [Google Scholar] [CrossRef] [PubMed]
- Guzsvány, V.J.; Csanádi, J.J.; Lazić, S.D.; Gaál, F.F. Photocatalytic degradation of the insecticide acetamiprid on TiO2 catalyst. J. Braz. Chem. Soc. 2009, 20, 152–159. [Google Scholar] [CrossRef]
- Banić, N.D.; Šojić, D.V.; Krstić, J.B.; Abramović, B.F. Photodegradation of neonicotinoid active ingredients and their commercial formulations in water by different advanced oxidation processes. Water Air Soil Pollut. 2014, 225, 1954. [Google Scholar] [CrossRef]
- Fenoll, J.; Garrido, I.; Hellín, P.; Flores, P.; Navarro, S. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides. Environ. Sci. Pollut. Res. 2015, 22, 15055–15066. [Google Scholar] [CrossRef] [PubMed]
- Acero, J.L.; Real, F.J.; Benitez, F.J.; Matamoros, E. Degradation of neonicotinoids by UV irradiation: Kinetics and effect of real water constituents. Sep. Purif. Technol. 2019, 211, 218–226. [Google Scholar] [CrossRef]
- González, T.; Dominguez, J.R.; Correia, S. Neonicotinoids removal by associated binary, tertiary and quaternary advanced oxidation processes: Synergistic effects, kinetics and mineralization. J. Environ. Manag. 2020, 261, 110156. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Kang, J.-K.; Park, S.J.; Lee, C.-G.; Moon, J.K.; Alvarez, P.J.J. Photocatalytic degradation of neonicotinoid insecticides using sulfate-doped Ag3PO4 with enhanced visible light activity. Chem. Eng. J. 2020, 402, 126183. [Google Scholar] [CrossRef]
- Sayury Miyashiro, C.; Hamoudi, S. Aqueous acetamiprid degradation using combined ultrasonication and photocatalysis under visible light. Water Air Soil Pollut. 2022, 233, 401. [Google Scholar] [CrossRef]
- Available online: http://amit-online.de/en/perlite-expansion-plants/basic-characteristics-and-application-areas-of-perlite/ (accessed on 10 May 2023).
- Samar, M.; Saxena, S. Study of chemical and physical properties of perlite and its application in India. Int. J. Sci. Technol. Manag. 2016, 5, 70–79. [Google Scholar]
- Papadopoulos, A.P.; Bar-Tal, A.; Silber, A.; Saha, U.K.; Raviv, M. Inorganic and synthetic organic components of soilless culture and potting mixes. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.L., Eds.; Academic Press: San Diego, CA, USA; Elsevier BV: Amsterdam, The Netherlands, 2008; Chapter 12; pp. 505–544. [Google Scholar]
- Maxineasa, S.G.; Isopescu, D.N.; Lupu, M.L.; Baciu, I.-R.; Pruna, L.; Somacescu, C. The use of perlite in civil engineering applications. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1242, 012022. [Google Scholar] [CrossRef]
- Available online: https://www.perlite.org/wp-content/uploads/2018/03/perlite-for-filtration.pdf (accessed on 10 May 2023).
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Perlite toxicology and epidemiology—A review. Inhal. Toxicol. 2014, 26, 259–270. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 6th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimisation Using Designed Experiments, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Barka, N.; Abdennouri, M.; Boussaoud, A.; Galadi, A.; Baâlala, M.; Bensitel, M.; Sahibed-Dine, A.; Nohair, K.; Sadiq, M. Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspension. Arab. J. Chem. 2014, 7, 752–757. [Google Scholar] [CrossRef]
- Babić, K.; Tomašić, V.; Gilja, V.; Le Cunff, J.; Gomzi, V.; Pintar, A.; Žerjav, G.; Kurajica, S.; Duplančić, M.; Zelić, I.E.; et al. Photocatalytic degradation of imidacloprid in the flat-plate photoreactor under UVA and simulated solar irradiance conditions—The influence of operating conditions, kinetics and degradation pathway. J. Environ. Chem. Eng. 2021, 9, 105611. [Google Scholar] [CrossRef]
- Hosseini, S.N.; Borghei, S.M.; Vossoughi, M.; Taghavinia, N. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl. Catal. 2007, 74, 53–62. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Zhang, J.; Zhao, J.; Gu, Z.; Zhou, L. Synthesis, structural characterization and evaluation of floating B-N codoped TiO2/expanded perlite composites with enhanced visible light photoactivity. Appl. Surf. Sci. 2015, 349, 264–271. [Google Scholar] [CrossRef]
- Olis, D.F. Kinetics of photocatalyzed reactions: Five lessons learned. Front. Chem. 2018, 6, 378. [Google Scholar] [CrossRef] [PubMed]
Sample | Specific Surface Area, m2 g−1 | Average Pore Diameter, nm |
---|---|---|
TiO2 P25 | 53.84 | 9.72 |
Perlite (untreated) | 2.09 | 8.42 |
Cat-1 | 5.56 | 8.49 |
Cat-2 | 1.98 | 8.39 |
Cat-3 | 4.87 | 7.56 |
Factor | Levels | ||
---|---|---|---|
Minimum (−1) | Mean (0) | Maximum (1) | |
A: Volume/mL | 100 | 150 | 200 |
B: Radiation Intensity/mW cm−2 | 10 | 20 | 30 |
C: Catalyst Preparation/- | Cat-1 | Cat-2 | Cat-3 |
Run | Volume, mL | LED Intensity, mW cm−2 | Catalyst Preparation | Conversion, % | k′ × 103, min−1 | RMSD |
---|---|---|---|---|---|---|
1 | 200 | 20 | Cat-1 | 35.59 | 1.83 | 0.051 |
2 | 200 | 20 | Cat-3 | 10.61 | 0.47 | 0.012 |
3 | 200 | 30 | Cat-2 | 37.33 | 1.95 | 0.028 |
4 | 100 | 10 | Cat-2 | 33.32 | 1.69 | 0.015 |
5 | 150 | 30 | Cat-3 | 18.51 | 0.85 | 0.019 |
6 | 150 | 20 | Cat-2 | 39.19 | 2.12 | 0.018 |
7 | 200 | 10 | Cat-2 | 22.55 | 1.06 | 0.039 |
8 | 150 | 30 | Cat-1 | 43.08 | 2.35 | 0.024 |
9 | 100 | 20 | Cat-1 | 39.42 | 2.09 | 0.022 |
10 | 150 | 10 | Cat-1 | 30.67 | 1.53 | 0.035 |
11 | 100 | 20 | Cat-3 | 15.79 | 0.71 | 0.013 |
12 | 100 | 30 | Cat-2 | 48.49 | 2.76 | 0.038 |
13 | 150 | 10 | Cat-3 | 8.68 | 0.38 | 0.008 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2031.09 | 9 | 225.68 | 15.02 | 0.0237 | Significant |
A-Volume | 169.37 | 1 | 169.37 | 11.27 | 0.0438 | |
B- Radiation Intensity | 268.08 | 1 | 268.08 | 17.84 | 0.0243 | |
C- Catalyst Preparation | 1132.4 | 1 | 1132.4 | 75.36 | 0.0032 | |
AB | 7.51 | 1 | 7.51 | 0.4996 | 0.5306 | |
AC | 0.4556 | 1 | 0.4556 | 0.0303 | 0.8729 | |
BC | 1.68 | 1 | 1.68 | 0.1116 | 0.7603 | |
A2 | 2.72 | 1 | 2.72 | 0.1807 | 0.6994 | |
B2 | 3.35 | 1 | 3.35 | 0.2227 | 0.6692 | |
C2 | 371.43 | 1 | 371.43 | 24.72 | 0.0156 | |
Residual | 45.08 | 3 | 15.03 | |||
Cor Total | 2076.17 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosar, V.; Križanac, A.-M.; Zelić, I.E.; Kurajica, S.; Tomašić, V. Photocatalytic Degradation of Neonicotinoid Insecticides over Perlite-Supported TiO2. Processes 2023, 11, 2588. https://doi.org/10.3390/pr11092588
Kosar V, Križanac A-M, Zelić IE, Kurajica S, Tomašić V. Photocatalytic Degradation of Neonicotinoid Insecticides over Perlite-Supported TiO2. Processes. 2023; 11(9):2588. https://doi.org/10.3390/pr11092588
Chicago/Turabian StyleKosar, Vanja, Ana-Marija Križanac, Ivana Elizabeta Zelić, Stanislav Kurajica, and Vesna Tomašić. 2023. "Photocatalytic Degradation of Neonicotinoid Insecticides over Perlite-Supported TiO2" Processes 11, no. 9: 2588. https://doi.org/10.3390/pr11092588
APA StyleKosar, V., Križanac, A.-M., Zelić, I. E., Kurajica, S., & Tomašić, V. (2023). Photocatalytic Degradation of Neonicotinoid Insecticides over Perlite-Supported TiO2. Processes, 11(9), 2588. https://doi.org/10.3390/pr11092588