Effect of Self-Recirculating Casing Treatment on the Aerodynamic Performance of Ultra-High-Pressure-Ratio Centrifugal Compressors
Abstract
:1. Introduction
2. Numerical Methods and Validation
2.1. Case Description
2.2. Parametric model of SRCT
2.3. Numerical Methods
2.4. Mesh Independence Study
2.5. Numerical Method Validation
3. Results and Analysis
3.1. The Influence of SRCT on Performance
3.1.1. The Influence of Rear Slot Distance
3.1.2. The Influence of Rear Slot Width
3.2. The Flow Mechanism for the Influence of SRCT
3.2.1. The Effect of SRCT on the Flow Behavior at the Impeller
3.2.2. The Effect of SRCT on Aerodynamic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Notation | |
SRCT | Self-Recirculating Casing Treatment |
WOCT | Without Self-Recirculating Casing Treatment |
RANS | Reynolds-Averaged Navier Stokes |
HPC | High-Performance Computing |
SA | Spalart–Allmaras |
IMP | Impeller |
RD | Radial diffuser |
AD | Axial diffuser |
SFR | Stable Flow Range |
LE | Leading Edge |
TE | Trailing Edge |
W | Velocity |
Subscripts | |
choke | Choke point |
surge | Near surge point |
r | Radial direction |
References
- Hung, K.-S.; Ho, K.-Y.; Hsiao, W.-C.; Kuan, Y.-D. The Characteristic of High-Speed Centrifugal Refrigeration Compressor with Different Refrigerants via CFD Simulation. Processes 2022, 10, 928. [Google Scholar] [CrossRef]
- Wei, Y.; Li, B.; Xu, X.; Wei, M.; Wang, C. Design of Electric Supercharger Compressor and Its Performance Optimization. Processes 2023, 11, 2132. [Google Scholar] [CrossRef]
- Palmer, D.L.; Waterman, W.F. Design and Development of an Advanced Two-Stage Centrifugal Compressor. J. Turbomach. 1995, 117, 205. [Google Scholar] [CrossRef]
- Kim, J.; Lee, E.; Yang, S. A Numerical Investigation on the Centrifugal Compressor Stage for a Small Turboshaft Engine. In Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Volume 2: Symposia, Parts A, B, and C, Honolulu, HI, USA, 6–10 July 2003; pp. 707–712. [Google Scholar]
- Krain, H.; Hoffman, W. Verification of an impeller design by laser measurements and 3D-viscous flow calculations. In Proceedings of the ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition, Volume 1: Turbomachinery, Toronto, ON, Canada, 4–8 June 1989; V001T01A064. [Google Scholar]
- Higashimori, H.; Hasagawa, K.; Sumida, K.; Suita, T. Detailed flow study of mach number 1.6 high transonic flow with a shock wave in a pressure ratio 11 centrifugal compressor impeller. J. Turbomach. 2004, 126, 473. [Google Scholar] [CrossRef]
- Higashimori, H.; Morishita, S.; Suzuki, M.; Suita, T. Detailed flow study of mach number 1.6 high transonic flow in a pressure ratio 11 centrifugal compressor impeller: Part 2-Effect of the inducer shroud bleed and development of a low energy region along the shroud. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Volume 6: Turbo Expo 2007, Parts A and B, Montreal, QC, Canada, 14–17 May 2007; pp. 1071–1080. [Google Scholar]
- Kang, S. Numerical Investigation of a High Speed Centrifugal Compressor Impeller. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Volume 6: Turbo Expo 2005, Parts A and B, Reno, NV, USA, 6–9 June 2005; pp. 813–821. [Google Scholar]
- Ibaraki, S.; Matsuo, T.; Kuma, H.; Sumida, K.; Suita, T. Aerodynamics of a transonic centrifugal compressor impeller. J. Turbomach. 2003, 125, 346. [Google Scholar] [CrossRef]
- Ibaraki, S.; Furukawa, M.; Iwakiri, K.; Takahashi, K. Vortical Flow Structure and Loss Generation Process in a Transonic Centrifugal Compressor Impeller. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Volume 6: Turbo Expo 2007, Parts A and B, Montreal, QC, Canada, 14–17 May 2007; pp. 1089–1098. [Google Scholar]
- Oana, M.; Kawamoto, O.; Ohtani, H.; Yamamoto, Y. Approach to high performance transonic centrifugal compressor. J. Propul. Power. 2004, 20, 602. [Google Scholar] [CrossRef]
- Japikse, D. Centrifugal Compressor Design and Performance; Wilder: Windsor County, VT, USA, 1996. [Google Scholar]
- Zhang, Q.; Zhang, L.; Huo, Q.; Zhang, L. Study on Two Types of Stall Patterns in a Centrifugal Compressor with a Wide Vaneless Diffuser. Processes 2020, 8, 1251. [Google Scholar] [CrossRef]
- Traficante, S.; De Giorgi, M.G.; Ficarella, A. Flow Separation Control on a Compressor-Stator Cascade Using Plasma Actuators and Synthetic and Continuous Jets. J. Aerosp. Eng. 2016, 29, 04015056. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Chen, F. Flow Control on Bowed Compressor Cascades Using Vortex Generator Jet at Different Incidences. J. Aerosp. Eng. 2017, 30, 04017028. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Wang, B.; Sun, Z.; Zheng, X. Stability Improvement of a High-Pressure Ratio Centrifugal Compressor by Flow Injection. J. Aerosp. Eng. 2020, 33, 04020072. [Google Scholar] [CrossRef]
- Sun, X.; Dong, X.; Sun, D. Recent development of casing treatments for aero-engine compressors. Chin. J. Aeronaut. 2019, 32, 1. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W.; Chen, H.; Zhang, Y. Numerical Investigation of Premature Stall in a Non-Tip-Loaded Rotor Caused by Circumferential Groove Casing Treatment. J. Aerosp. Eng. 2021, 34, 04021032. [Google Scholar] [CrossRef]
- Tamaki, H. Effect of recirculation device on performance of high pressure ratio centrifugal compressor. J. Turbomach. 2010, 134, 1879. [Google Scholar]
- He, X.; Zheng, X. Roles and Mechanisms of Casing Treatment on Different Scales of Flow Instability in High Pressure Ratio Centrifugal Compressors. Aerosp. Sci. Technol. 2019, 84, 734. [Google Scholar] [CrossRef]
- Gancedo, M.; Gutmark, E.; Guillou, E. PIV measurements of the flow at the inlet of a turbocharger centrifugal compressor with recirculation casing treatment near the inducer. Exp. Fluids 2016, 57, 16. [Google Scholar] [CrossRef]
- Yang, M.; Martines-botas, R.; Deng, K.; Zhang, Y.; Zheng, X. Unsteady influence of Self Recirculation Casing Treatment (SRCT) on high pressure ratio centrifugal compressor. Int. J. Heat Fluid Flow 2016, 58, 19. [Google Scholar]
- Yang, M.; Martinez-botas, R.; Zhang, Y.; Zheng, X. Effect of Self-Recirculation-Casing Treatment on High Pressure Ratio Centrifugal Compressor. J. Propul. Power 2016, 32, 602–610. [Google Scholar] [CrossRef]
- Hu, L.; Sun, H.; Yi, J.; Curtis, E.; Zhang, J.; Yang, C.; Krivitziky, E. Numerical and experimental investigation of a compressor with active self-recirculation casing treatment for a wide operation range. Proc. Inst. Mech. Eng. Part D J. Automot. Eng. 2013, 227, 1227. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Z.; Wang, B.; Zheng, X. Influence of splitter blades on the performance of a single stage centrifugal compressor with pressure ratio 12.0. In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Volume 2E: Turbomachinery, Virtual, Online, 21–25 September 2020. V02ET39A016. [Google Scholar]
Parameters | Values |
---|---|
Blade number at impeller exit | 36 |
Rotating speed | 57,900.00 rpm |
The Leading Edge (LE) blade height | 43.00 mm |
The Trailing Edge (TE) blade width | 5.90 mm |
Radius at impeller exit | 112.00 mm |
The LE tip clearance | 0.17 mm |
The TE tip clearance | 0.38 mm |
Distribution of tip clearance from LE to TE | Linear |
Parameters | Symbols | Values (mm) |
---|---|---|
Rear slot distance | Sr | 13.50; 9.50; 17.50; 21.50 |
Rear slot width | Br | 5.00; 7.00; 9.00; 11.00; 13.00 |
Front slot distance | Sf | 15.75 |
Front slot width | Bf | 7.50 |
Channel height | Hb | 7.50 |
Channel width | Bb | 10.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, T.; Wang, B.; Yan, C.; Zhang, W.; Song, Z.; Zheng, X. Effect of Self-Recirculating Casing Treatment on the Aerodynamic Performance of Ultra-High-Pressure-Ratio Centrifugal Compressors. Processes 2023, 11, 2439. https://doi.org/10.3390/pr11082439
Fan T, Wang B, Yan C, Zhang W, Song Z, Zheng X. Effect of Self-Recirculating Casing Treatment on the Aerodynamic Performance of Ultra-High-Pressure-Ratio Centrifugal Compressors. Processes. 2023; 11(8):2439. https://doi.org/10.3390/pr11082439
Chicago/Turabian StyleFan, Tengbo, Baotong Wang, Chuanxiang Yan, Wenchao Zhang, Zhaoyun Song, and Xinqian Zheng. 2023. "Effect of Self-Recirculating Casing Treatment on the Aerodynamic Performance of Ultra-High-Pressure-Ratio Centrifugal Compressors" Processes 11, no. 8: 2439. https://doi.org/10.3390/pr11082439
APA StyleFan, T., Wang, B., Yan, C., Zhang, W., Song, Z., & Zheng, X. (2023). Effect of Self-Recirculating Casing Treatment on the Aerodynamic Performance of Ultra-High-Pressure-Ratio Centrifugal Compressors. Processes, 11(8), 2439. https://doi.org/10.3390/pr11082439