Flotation Characteristics of Amphibole-Type Oxidized Iron Ore via Reverse Anionic Flotation
Abstract
:1. Introduction
2. Methods of Preparation and Study of the Test Sample
2.1. Collection and Preparation of Single Minerals
2.2. Research Methods
3. Study on Flotation Performance of Single Minerals
3.1. Effects of Different Conditions on Floatabilities of Single Minerals in the Sodium Oleate System
3.1.1. Effect of Sodium Oleate Dosage on the Floatabilities of Hematite, Amphibole and Quartz
3.1.2. Effect of pH on the Floatabilities of Hematite, Amphibole and Quartz in Sodium Oleate System
3.1.3. Influence of pH on the Floatabilities of Hematite, Amphibole and Quartz under the Presence of Ca2+ in the Sodium Oleate System
3.1.4. Effect of Starch on the Floatabilities of Hematite, Amphibole and Quartz in the Sodium Oleate System
3.1.5. Effect of CaCl2 Dosage on the Floatabilities of Hematite, Quartz and Amphibole in the Sodium Oleate System
3.2. Study on Flotation Separation of Artificially Mixed Minerals
3.2.1. Study on Flotation Separation of Binary Mixture with Hematite-Quartz
3.2.2. Study on Flotation Separation of Ternary Mixture with Hematite–Quartz–Amphibole
3.3. The Effect of Anionic Collectors on the Surface Potential of Minerals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.X.; Chen, H.C. Study on measures to alleviate the bottleneck constraints of mineral resources in China. Geol. Explor. 2009, 1, 82–88. [Google Scholar]
- Ge, Y. Study on improving the grade of Dong’anshan flotation iron concentrate. Nonferrous Met. (Miner. Process. Sect.) 2002, 3, 45–47. [Google Scholar]
- Ren, J.W.; Wang, Y.H. Experimental study on reverse flotation desilication of iron ore. Miner. Prot. Util. 2004, 1, 31–34. [Google Scholar]
- Xu, B.H. Study on the Use of Coconut Amine Cationic Collector for Reverse Flotation of Iron Pit Limonite; China Metallurgical Mining Enterprises Association: Beijing, China, 2008. [Google Scholar]
- Cai, Z. Research on the Application of Cationic Collectors for Reducing Silica in Iron Ore Reverse Flotation. Ph.D. Thesis, Jiangxi University of Science and Technology, Nanchang, China, 20 December 2009. [Google Scholar]
- Zhang, Z.; Liu, G. Laboratory and industrial test study of anionic collector LKY. China Min. 2003, 12, 4. [Google Scholar]
- Liu, J.; Yang, Z.; Teng, Q.; Shang, X. Study on the flotation separation of magnetite and amphibole using mixed collector CTAB and sodium oleate. Nonferrous Met. (Miner. Process. Sect.) 2020, 3, 119–125. [Google Scholar]
- Wang, Y.; Tang, M. Research progress on the application and mechanism of starch in iron oxide minerals. Compr. Util. Miner. Resour. 2015, 5, 17–22. [Google Scholar]
- Pavlovic, S.; Brandao, P.R.G. Adsorption of starch, amylose amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Miner. Eng. 2003, 11, 1117–1122. [Google Scholar] [CrossRef]
- Kar, B.; Sahoo, H.; Rath, S.S.; Das, B. Investigations on different starches as depressants for iron ore flotation. Miner. Eng. 2013, 49, 1–6. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Heyes, G.W.; Ilyas, S.; Kim, H. Effects of artificial impeller blade wear on the bubble–particle interactions using CFD (k–ε and LES), PIV, and 3D printing. Miner. Eng. 2022, 186, 107766. [Google Scholar] [CrossRef]
- Cai, Z.; Yang, W.; He, H.; Zhang, H.; Wang, C. A study on the washability of a Yunnan phosphate ore based on narrow particle flotation. Yunnan Chem. Ind. 2023, 50, 36–40. [Google Scholar]
- Wang, D.; Liu, Q. Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Miner. Eng. 2021, 173, 107220. [Google Scholar] [CrossRef]
- Haom, H.; Li, L.; Yuan, Z.; Liu, J. Molecular arrangement of starch, Ca2+, and oleate ions in the siderite-hematite-quartz flotation system. J. Mol. Liq. 2018, 254, 349–356. [Google Scholar]
- Mao, Y.; Huang, L.; Zhao, F. Achievements and Development Prospect of Mineral Processing Technology of China’s Iron Mines. Met. Mine 2005, 2, 1–7. [Google Scholar]
- Li, M.; Yang, R.; Gao, X.; Hu, Y. The effect of selective adsorption of dissolved aegirine species on the separation of speculative and aegirite. Adv. Powder Technol. 2020, 31, 4197–4206. [Google Scholar] [CrossRef]
- Zhang, X.; Huangfu, M.; Deng, J.; Wang, Y.; Wu, B.; Hu, M.; Zhao, H.; Wu, S. Surface characteristics and flotation behaviors of specularite as influenced by lead ion modification. Sep. Purif. Technol. 2021, 276, 119384. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y. Study on the Separation of Oxidized Ore from Yuanjiacun Iron Mine. Met. Mine 2012, 10, 65–69. [Google Scholar]
- Alvarez-Silva, M.; Uribe-Salas, A.; Mirnezami, M.; Finch, J.A. The point of zero charge of phyllosilicate minerals using the Mular–Roberts titration technique. Miner. Eng. 2010, 23, 383–389. [Google Scholar] [CrossRef]
- Mei, G.; Yu, J.; Cai, H.; Yu, Y. Application Research of Separating Hematite from Iron-containing Silicates by Flotation. Met. Mine 2002, 2, 28–31. [Google Scholar]
- Dan, W.; Siqing, L.; Hailin, L.; Libing, Z.; Yang, Z. Study on Selective Separation of Hematite, Quartz and Chlorite by Flocculation. Multipurp. Util. Miner. Resour. 2015, 5, 46–49. [Google Scholar]
- Sun, C.; Yin, W. Research on the relation between flowability of silicate minerals with their crystal structure and surface characteristics. Min. Metall. 1998, 7, 22–28. [Google Scholar]
- Ataman, E.; Andersson, M.P.; Ceccato, M.; Bovet, N.; Stipp, S.L.S. Functional group adsorption on calcite: I. Oxygen-containing and nonpolar organic molecules. J. Phys. Chem. C 2016, 120, 16586–16596. [Google Scholar] [CrossRef]
- Wu, D.; Mao, Y.; Deng, J.; Wen, S. Activation mechanism of ammonium ions on sulfidation of malachite (–201) surface by DFT study. Appl. Surf. Sci. 2017, 410, 126–133. [Google Scholar] [CrossRef]
- Naher, M.I.; Parvin, F.; Islam, A.K.M.A.; Naqib, S.H. Structural, elastic, electronic, and bonding properties of intermetallic Nb3Pt and Nb3Os compounds: A DFT study. arXiv 2017, arXiv:1706.03314. [Google Scholar]
- Sarvaramini, A.; Larachi, F.; Hart, B. Collector attachment to lead-activated sphalerite–Experiments and DFT study on pH and solvent effects. Appl. Surf. Sci. 2016, 367, 459–472. [Google Scholar] [CrossRef]
- Chandra, A.P.; Gerson, A.R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite, and pyrite. Adv. Colloid Interface Sci. 2009, 145, 97–110. [Google Scholar] [CrossRef]
Mineral Name | No Collector Adsorbed | Sodium Oleate Concentration 50 mg/L | Sodium Oleate Concentration 100 mg/L |
---|---|---|---|
Hematite Contact Angle/° | 36.50 ± 1.22 | 64.22 ± 2.34 | 90.64 ± 2.65 |
Amphibole Contact Angle/° | 28.21 ± 0.53 | 52.23 ± 0.75 | 82.31 ± 1.21 |
Quartz Contact Angle/° | 16.24 ± 0.82 | 90.26 ± 1.05 | 102.05 ± 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huangfu, M.; Hu, Y.; Zhou, Y.; Li, M.; Deng, J.; Li, S.; Peng, G. Flotation Characteristics of Amphibole-Type Oxidized Iron Ore via Reverse Anionic Flotation. Processes 2023, 11, 2388. https://doi.org/10.3390/pr11082388
Huangfu M, Hu Y, Zhou Y, Li M, Deng J, Li S, Peng G. Flotation Characteristics of Amphibole-Type Oxidized Iron Ore via Reverse Anionic Flotation. Processes. 2023; 11(8):2388. https://doi.org/10.3390/pr11082388
Chicago/Turabian StyleHuangfu, Mingzhu, Yiming Hu, Yongcheng Zhou, Mingyang Li, Jiushuai Deng, Shan Li, and Guixiong Peng. 2023. "Flotation Characteristics of Amphibole-Type Oxidized Iron Ore via Reverse Anionic Flotation" Processes 11, no. 8: 2388. https://doi.org/10.3390/pr11082388
APA StyleHuangfu, M., Hu, Y., Zhou, Y., Li, M., Deng, J., Li, S., & Peng, G. (2023). Flotation Characteristics of Amphibole-Type Oxidized Iron Ore via Reverse Anionic Flotation. Processes, 11(8), 2388. https://doi.org/10.3390/pr11082388