CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CuFe2O4 Nanoparticles
2.2. 3,4-Dihydropyrimidin-2(1H)-one Synthesis
2.3. Molecular Docking Studies
3. Experimental Details
3.1. Synthesis of Copper Ferrite Nanoparticles
3.2. Synthesis of 3,4-Dihydropyrimidinones via Ultrasonic Irradiation Method
3.3. Analytical Data of Some Representative Compounds
- Ethyl4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (DHPM16): M. P: 206–208 °C; IR (KBr): 3520, 3275, 2899, 1665, 762, 702 cm−1; 1H NMR (400 MHz, DMSO-d6): 1.04–1.10 (t, 3H, -OCH2CH3), 2.22 (s, 3H, -CH3), 3.70 (s, 3H, -OCH3), 3.91–3.96 (q, 2H, -OCH2CH3), 5.05 (s, 1H, -CH-Ar), 6.82–6.87 (d, 2H, J = 8.0 Hz, Ar-H), 7.11–7.09 (d, 2H, J = 8.0 Hz, Ar-H), 7.62 (s, 1H, NH); 9.11 (s, 1H, NH); 13C NMR: (100 MHz, DMSO-d6) 14.2, 17.6, 53.2, 55.8, 61.7, 106.4, 114.1, 125.7, 135.6, 147.3, 150.2, 156.5, 158.6, 167.2; ESI-MS: m/z 291.18 [M+1]+, Anal. Calcd forC15H18N2O4: C, 62.06; H, 6.25; N, 9.65. Found: C, 62.10; H, 6.24; N, 9.68.
- Ethyl4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (DHPM19): M. P: 209–220 °C; IR (KBr): 3518, 3235, 2985, 1648, 762, 686 cm−1; 1H NMR (400 MHz, DMSO-d6): 1.07–1.04 (t, 3H, -OCH2CH3), 2.18 (s, 3H, -CH3), 3.97–3.90 (q, 2H, -OCH2CH3), 4.99 (s, 1H, -CH-Ar), 6.65–6.63 (d, 2H, J = 8.0 Hz, Ar-H), 6.99–6.97 (d, 2H, J = 8.0 Hz, Ar-H), 7.57 (s, 1H, NH); 9.07 (s, 1H, NH); 9.28 (s, 1H, OH); 13C NMR: (100 MHz, DMSO-d6) 14.8, 17.4, 53.2, 61.7, 106.4, 115.7, 126.4, 135.9, 147.6, 150.2, 156.5, 167.2; ESI-MS: m/z 277.11 [M+1]+, Anal. Calcd forC14H16N2O4: C, 60.86; H, 5.84; N, 10.14. Found: C, 60.84; H, 5.86; N, 10.12.
- Methyl4-(4-fluorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (DHPM36): M. P: 194–196 °C; IR (KBr): 3526, 3238, 2965, 1668, 790, 676 cm−1;1H NMR (400 MHz, DMSO-d6) δ 9.23 (s, 1H, NH), 7.74 (s, 1H, NH), 7.29–7.17 (m, 2H, Ar-H), 7.11 (t, J = 8.7 Hz, 2H, Ar-H), 5.12 (s, 1H, -CH-Ar), 3.50 (s, 3H, -OCH3), 2.22 (s, 3H, -CH3). 13C NMR (101 MHz, DMSO) δ 166.23, 163.01, 160.60, 160.08, 152.51, 149.27, 141.41, 141.38, 128.68, 128.60, 115.74, 115.53, 99.39, 53.65, 51.27, 18.30. ESI-MS: m/z 265.07 [M+1]+, Anal. Calcd forC13H13FN2O3: C, 59.09; H, 4.96; N, 10.60, O, 18.16. Found: C, 59.11; H, 5.02; N, 10.57, O, 18.20.
3.4. Molecular Docking and DFT Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biginelli, P.; Gazz, P. Synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Gazz. Chim. Ital. 1893, 23, 360–416. [Google Scholar]
- Tron, G.C.; Minassi, A.; Appendino, G. Pietro Biginelli: The Man behind the Reaction; Wiley Online Library: Hoboken, NJ, USA, 2011. [Google Scholar]
- Matos, L.H.S.; Masson, F.T.; Simeoni, L.A.; Homem-de-Mello, M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. Eur. J. Med. Chem. 2018, 143, 1779–1789. [Google Scholar] [CrossRef] [PubMed]
- Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type—A literature survey. Eur. J. Med. Chem. 2000, 35, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.S.; Ly, S.K.; Mackin, G.H.; Overman, L.E.; Shaka, A. Application of the tethered Biginelli reaction for enantioselective synthesis of batzelladine alkaloids. Absolute configuration of the tricyclic guanidine portion of batzelladine B. J. Org. Chem. 1999, 64, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1, 2, 3, 4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem. 1991, 34, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,946. J. Cardiovasc. Pharmacol. 1995, 26, 289–294. [Google Scholar] [CrossRef]
- Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem. 1995, 38, 119–129. [Google Scholar] [CrossRef]
- Hu, E.H.; Sidler, D.R.; Dolling, U.-H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl-4-aryl-3, 4-dihydropyrimidin-2 (1H)-ones. J. Org. Chem. 1998, 63, 3454–3457. [Google Scholar] [CrossRef]
- Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe (NO3)3.9 H2O as catalyst. Green Chem. Lett. Rev. 2010, 3, 329–334. [Google Scholar] [CrossRef]
- Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Fard, M.A.B. Silica sulfuric acid: An efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Tetrahedron Lett. 2003, 44, 2889–2891. [Google Scholar] [CrossRef]
- Oboudatian, H.S.; Naeimi, H.; Moradian, M. A Brønsted acidic ionic liquid anchored to magnetite nanoparticles as a novel recoverable heterogeneous catalyst for the Biginelli reaction. RSC Adv. 2021, 11, 7271–7279. [Google Scholar] [CrossRef] [PubMed]
- Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem. 2018, 22, 533–556. [Google Scholar] [CrossRef]
- Nazari, S.; Saadat, S.; Fard, P.K.; Gorjizadeh, M.; Nezhad, E.R.; Afshari, M. Imidazole functionalized magnetic Fe3O4 nanoparticles as a novel heterogeneous and efficient catalyst for synthesis of dihydropyrimidinones by Biginelli reaction. Monatshefte Für Chem.-Chem. Mon. 2013, 144, 1877–1882. [Google Scholar] [CrossRef]
- Afshari, M.; Gorjizadeh, M.; Naseh, M. Supported sulfonic acid on magnetic nanoparticles used as a reusable catalyst for rapid synthesis of α-aminophosphonates. Inorg. Nano-Met. Chem. 2017, 47, 591–596. [Google Scholar] [CrossRef]
- Afshari, M.; Carabineiro, S.A.; Gorjizadeh, M. Sulfonated Silica Coated CoFe2O4 Magnetic Nanoparticles for the Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-One and Octahydroquinazoline Derivatives. Catalysts 2023, 13, 989. [Google Scholar] [CrossRef]
- Marzag, H.; Robert, G.; Dufies, M.; Bougrin, K.; Auberger, P.; Benhida, R. FeCl3-promoted and ultrasound-assisted synthesis of resveratrol O-derived glycoside analogs. Ultrason. Sonochemistry 2015, 22, 15–21. [Google Scholar] [CrossRef]
- Vieira, M.M.; Dalberto, B.T.; Padilha, N.B.; Junior, H.C.; Rodembusch, F.S.; Schneider, P.H. Fast and efficient one-pot ultrasound-mediated synthesis of solid state (full color tunable) fluorescent indolizine derivatives. Dye. Pigment. 2023, 216, 111332. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Wu, P.; Zhao, J.; Zheng, W. Ultrasound-Mediated Monodesulfonation of Polyphenol Sulfonate and One-Pot Generation of Alkyl Aryl Ether under Solvent-Free Conditions. ChemistrySelect 2023, 8, e202300659. [Google Scholar] [CrossRef]
- Shabalala, N.G.; Kerru, N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Ultrasound-mediated catalyst-free protocol for the synthesis of bis-3-methyl-1-phenyl-1H-pyrazol-5-ols in aqueous ethanol. Chem. Data Collect. 2020, 28, 100467. [Google Scholar] [CrossRef]
- Chatel, G. How sonochemistry contributes to green chemistry? Ultrason. Sonochemistry 2018, 40, 117–122. [Google Scholar] [CrossRef]
- Bendi, A.; Atri, S.; Rao, G.D.; Raza, M.J.; Sharma, N. Ultrasound-Accelerated, Concise, and Highly Efficient Synthesis of 2-Oxazoline Derivatives Using Heterogenous Calcium Ferrite Nanoparticles and Their DFT Studies. J. Chem. 2021, 2021, 7375058. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, N.; Kashyap, G.; Bhagat, S. A concise and regioselective synthesis of 6-bromo-5-methoxy-1 H-indole-3-carboxylic acid and its derivatives: Strategic development toward core moiety of Herdmanine D. Synth. Commun. 2020, 50, 719–725. [Google Scholar] [CrossRef]
- Eisavi, R.; Karimi, A. CoFe2O4/Cu(OH)2 magnetic nanocomposite: An efficient and reusable heterogeneous catalyst for one-pot synthesis of β-hydroxy-1, 4-disubstituted-1, 2, 3-triazoles from epoxides. RSC Adv. 2019, 9, 29873–29887. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Magalhães, C.A.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Castanheira, E.M.; Coutinho, P.J. Magnetic nanoparticles of zinc/calcium ferrite decorated with silver for photodegradation of dyes. Materials 2019, 12, 3582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharisov, B.I.; Dias, H.R.; Kharissova, O.V. Mini-review: Ferrite nanoparticles in the catalysis. Arab. J. Chem. 2019, 12, 1234–1246. [Google Scholar] [CrossRef] [Green Version]
- Peymanfar, R.; Azadi, F.; Yassi, Y. Preparation and characterization of CuFe2O4 nanoparticles by the sol-gel method and investigation of its microwave absorption properties at Ku-band frequency using silicone rubber. Proceedings 2018, 2, 1155. [Google Scholar]
- Nikolić, V.N.; Vasić, M.M.; Kisić, D. Observation of c-CuFe2O4 nanoparticles of the same crystallite size in different nanocomposite materials: The influence of Fe3+ cations. J. Solid State Chem. 2019, 275, 187–196. [Google Scholar] [CrossRef]
- Bendi, A.; Rao, G.B.D. Strategic One-pot Synthesis of Glycosyl Annulated Phosphorylated/Thiophosphorylated 1, 2, 3-Triazole Derivatives Using CuFe2O4 Nanoparticles as Heterogeneous Catalyst, their DFT and Molecular Docking Studies as Triazole Fungicides. Lett. Org. Chem. 2023, 20, 568–578. [Google Scholar] [CrossRef]
- Rao, G.D.; Anjaneyulu, B.; Kaushik, M. Greener and expeditious one-pot synthesis of dihydropyrimidinone derivatives using non-commercial β-ketoesters via the Biginelli reaction. RSC Adv. 2014, 4, 43321–43325. [Google Scholar] [CrossRef]
- Rao, G.D.; Anjaneyulu, B.; Kaushik, M. A facile one-pot five-component synthesis of glycoside annulated dihydropyrimidinone derivatives with 1, 2, 3-triazol linkage via transesterification/Biginelli/click reactions in aqueous medium. Tetrahedron Lett. 2014, 55, 19–22. [Google Scholar]
- Anjaneyulu, B.; Rao, G.D.; Nagakalyan, S. Synthesis and DFT studies of 1, 2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. J. Saudi Chem. Soc. 2021, 25, 101394. [Google Scholar] [CrossRef]
- Gangadaran, P.; Padinjarathil, H.; Rajendran, S.H.S.; Jogalekar, M.P.; Hong, C.M.; Aruchamy, B.; Rajendran, U.M.; Gurunagarajan, S.; Krishnan, A.; Ramani, P. COVID-19 and diabetes: What do we know so far? Exp. Biol. Med. 2022, 247, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, E.; Khatab, T.; Fekri, A.; Khalifa, M. Synthesis of New Binary Thiazole-Based Heterocycles and Their Molecular Docking Study as COVID-19 Main Protease (M pro) Inhibitors. Russ. J. Gen. Chem. 2021, 91, 1767–1773. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, J.; Cha, Y.; Kolitz, S.; Funt, J.; Escalante Chong, R.; Barrett, S.; Kusko, R.; Zeskind, B.; Kaufman, H. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J. Transl. Med. 2020, 18, 257. [Google Scholar] [CrossRef]
- Krishnan, A.; Gangadaran, P.; Chavda, V.P.; Jogalekar, M.P.; Muthusamy, R.; Valu, D.; Vadivalagan, C.; Ramani, P.; Laishevtcev, A.; Katari, N.K. Convalescent serum-derived exosomes: Attractive niche as COVID-19 diagnostic tool and vehicle for mRNA delivery. Exp. Biol. Med. 2022, 247, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, R.R.; Tiwari, A.P.; Nyayanit, N.; Modak, M. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur. J. Pharmacol. 2020, 886, 173430. [Google Scholar] [CrossRef]
- Hu, X.; Cai, X.; Song, X.; Li, C.; Zhao, J.; Luo, W.; Zhang, Q.; Ekumi, I.O.; He, Z. Possible SARS-coronavirus 2 inhibitor revealed by simulated molecular docking to viral main protease and host toll-like receptor. Future Virol. 2020, 15, 359–368. [Google Scholar] [CrossRef]
- Musa, A.; Abulkhair, H.S.; Aljuhani, A.; Rezki, N.; Abdelgawad, M.A.; Shalaby, K.; El-Ghorab, A.H.; Aouad, M.R. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Pharmaceuticals 2023, 16, 463. [Google Scholar] [CrossRef]
- Narkhede, R.R.; Cheke, R.S.; Ambhore, J.P.; Shinde, S.D. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. Eurasian J. Med. Oncol. 2020, 4, 185–195. [Google Scholar]
- Sayed, A.M.; Alhadrami, H.A.; El-Gendy, A.O.; Shamikh, Y.I.; Belbahri, L.; Hassan, H.M.; Abdelmohsen, U.R.; Rateb, M.E. Microbial natural products as potential inhibitors of SARS-CoV-2 main protease (Mpro). Microorganisms 2020, 8, 970. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osipiuk, J.; Jedrzejczak, R.; Tesar, C.; Endres, M.; Stols, L.; Babnigg, G.; Kim, Y.; Michalska, K.; Joachimiak, A. The crystal structure of papain-like protease of SARS CoV-2. RSCB PDB 2020, 10. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, K.; Bahadur, A.; Jabbar, A.; Iqbal, S.; Ahmad, I.; Bashir, M.I. Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites. J. Magn. Magn. Mater. 2017, 434, 30–36. [Google Scholar] [CrossRef]
- Bendi, A.; Dharma Rao, G.B.; Sharma, N.; Tomar, R.; Singh, L. Solvent-Free Synthesis of Glycoside Annulated 1, 2, 3-Triazole Based Dihydropyrimidinones using Copper Ferrite Nanomaterials as Heterogeneous Catalyst and DFT Studies. ChemistrySelect 2022, 7, e202103910. [Google Scholar] [CrossRef]
- Anjaneyulu, B.; Rao, G.D.; Bajaj, T. Click chemistry: In vitro evaluation of glycosyl hybrid phosphorylated/thiophosphorylated 1,2,3-triazole derivatives as irreversible acetyl cholinesterase (AChE) inhibitors. Results Chem. 2021, 3, 100093. [Google Scholar] [CrossRef]
- Khabazzadeh, H.; Kermani, E.T.; Jazinizadeh, T. An efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones catalyzed by molten [Et3NH][HSO4]. Arab. J. Chem. 2012, 5, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Chandel, M.; Ghosh, B.K.; Moitra, D.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. Synthesis of various ferrite (MFe2O4) nanoparticles and their application as efficient and magnetically separable catalyst for biginelli reaction. J. Nanosci. Nanotechnol. 2018, 18, 2481–2492. [Google Scholar] [CrossRef]
- Kakaei, S.; Sid Kalal, H.; Hoveidi, H. Ultrasound assisted one-pot synthesis of dihydropyrimidinones using holmium chloride as catalyst. J. Sci. Islam. Repub. Iran 2015, 26, 117–123. [Google Scholar]
- Tabrizian, E.; Amoozadeh, A.; Shamsi, T. A novel class of heterogeneous catalysts based on toluene diisocyanate: The first amine-functionalized nano-titanium dioxide as a mild and highly recyclable solid nanocatalyst for the Biginelli reaction. React. Kinet. Mech. Catal. 2016, 119, 245–258. [Google Scholar] [CrossRef]
- Aridoss, G.; Jeong, Y.-T. A convenient one-pot Biginelli reaction catalyzed by Y(OAc)3: An improved protocol for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and their sulfur analogues. Bull. Korean Chem. Soc. 2010, 31, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Rout, L.; Achary, L.S.K.; Dhaka, R.S.; Dash, P. Greener route for synthesis of aryl and alkyl-14H-dibenzo [aj] xanthenes using graphene oxide-copper ferrite nanocomposite as a recyclable heterogeneous catalyst. Sci. Rep. 2017, 7, 42975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owis, A.; El-Hawary, M.; El Amir, D.; Aly, O.; Abdelmohsen, U.; Kamel, M. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Adv. 2020, 10, 19570–19575. [Google Scholar] [CrossRef] [PubMed]
Entry | CuFe2O4 mol% | Time (min.) | Yield % b |
---|---|---|---|
1 | - | 30 | 36 |
2 | 1 | 30 | 48 |
3 | 3 | 30 | 62 |
4 | 5 | 30 | 78 |
5 | 10 | 30 | 92 |
6 | 20 | 30 | 92 |
S. No | R | R1 | X | Time (min) | Product | Yield (%) b | Observed M. P | Reported M. P Ref. |
---|---|---|---|---|---|---|---|---|
1 | 4-Me- | O | 40 | DHPM1 | 94 | 154–156 | 148–150 [47] | |
2 | 4-OMe- | O | 30 | DHPM2 | 95 | 158–160 | 152–154 [47] | |
3 | 4-OEt- | O | 40 | DHPM3 | 95 | 132–134 | 128–130 [47] | |
4 | 4-OMe- | O | 35 | DHPM4 | 92 | 178–180 | 180–182 [47] | |
5 | 4-NO2- | O | 40 | DHPM5 | 92 | 170–172 | 174–176 [47] | |
6 | 4-Cl- | O | 25 | DHPM6 | 91 | 160–162 | 156–158 [47] | |
7 | 3-Cl- | O | 30 | DHPM7 | 94 | 192–194 | 194–196 [47] | |
8 | 4-OMe- | O | 20 | DHPM8 | 90 | 168–170 | 168–170 [47] | |
9 | 4-OMe- | O | 40 | DHPM9 | 92 | 160–162 | 158–160 [47] | |
10 | 4-OMe- | O | 25 | DHPM10 | 88 | 160–162 | 158–160 [42] | |
11 | 3-Cl- | O | 30 | DHPM11 | 90 | 202–204 | - | |
12 | 4-OMe- | O | 30 | DHPM12 | 92 | 198–200 | 200–202 [47] | |
13 | 4-OMe- | O | 40 | DHPM13 | 94 | 180–182 | 178–180 [47] | |
14 | 4-H- | OEt | O | 20 | DHPM14 | 94 | 200–202 | 198–200 [48] |
15 | 4-Cl- | OEt | O | 30 | DHPM15 | 90 | 210–212 | 211–213 [48] |
16 | 4-OMe- | OEt | O | 30 | DHPM16 | 92 | 206–208 | 200–202 [48] |
17 | 4-Me- | OEt | O | 40 | DHPM17 | 89 | 202–204 | 205–206 [48] |
18 | 2-Cl- | OEt | O | 25 | DHPM18 | 81 | 214–216 | 211–214 [48] |
19 | 4-OH- | OEt | O | 25 | DHPM19 | 79 | 208–210 | 209–220 [48] |
20 | 3-NO2- | OEt | O | 30 | DHPM20 | 86 | 218–220 | 217 [48] |
21 | 4-Br- | OEt | O | 30 | DHPM21 | 88 | 198–200 | 197 [48] |
22 | 4-NO2- | OEt | O | 35 | DHPM22 | 90 | 244–246 | 243–245 [48] |
23 | 2,4-di-Cl- | OEt | O | 25 | DHPM23 | 80 | 202–204 | 202–204 [48] |
24 | 3-OH- | OEt | S | 30 | DHPM24 | 81 | 180–182 | 183–184 [48] |
25 | 4-H- | OEt | S | 40 | DHPM25 | 91 | 204–204 | 200–205 [48] |
26 | 3-NO2- | OEt | S | 35 | DHPM2 | 87 | 208–210 | 206–207 [48] |
27 | 3,4-di-OMe- | OEt | O | 30 | DHPM27 | 80 | 176–178 | 175–177 [48] |
28 | 3,4-di-OMe- | OEt | S | 20 | DHPM28 | 72 | 212–214 | 212–214 [48] |
29 | 3,4,5-tri-OMe | OEt | O | 20 | DHPM29 | 68 | 180–182 | 180–181 [48] |
30 | 4-Me- | OEt | S | 35 | DHPM30 | 84 | 194–196 | 194–196 [48] |
31 | 3-Br- | OEt | O | 30 | DHPM31 | 88 | 190–192 | 190–192 [48] |
32 | 4-Br- | OEt | S | 25 | DHPM32 | 80 | 180–182 | 182–183 [48] |
33 | 4-OH- | OMe | O | 20 | DHPM33 | 85 | 244–246 | 242–244 [48] |
34 | 4-OMe- | OMe | S | 25 | DHPM34 | 80 | 152–154 | 152–154 [48] |
35 | 4-NO2- | OMe | O | 30 | DHPM35 | 84 | 230–232 | 233–235 [48] |
36 | 4-F- | OMe | O | 30 | DHPM36 | 89 | 194–196 | 193–195 [48] |
37 | 4-H- | OMe | O | 35 | DHPM37 | 92 | 206–208 | 208–210 [48] |
38 | 4-Br- | OMe | S | 25 | DHPM38 | 84 | 152–154 | 153–154 [48] |
39 | 4-OH- | OMe | S | 20 | DHPM39 | 79 | 246–248 | 245–246 [48] |
40 | 4-Cl- | OMe | O | 20 | DHPM40 | 89 | 204–206 | 204–206 [48] |
41 | 4-OMe- | OMe | O | 40 | DHPM41 | 90 | 190–192 | 189–193 [48] |
42 | 4-Br- | OMe | O | 40 | DHPM42 | 91 | 220–222 | 218–220 [48] |
Entry | Catalyst | Condition | Time (min) | Yield a | Reference |
---|---|---|---|---|---|
1 | CoFe2O4 | Solvent-free/80 °C | 90 | 85.4 | [49] |
2 | HoCl3 | Solvent-free/80 °C/UI | 150 | 92 | [50] |
3 | n-TiO2-NH2 | Solvent-free/100 °C | 270 | 91 | [51] |
4 | Y(OAc)3·X H2O | Acetic acid/reflux | 270 | 89 | [52] |
5 | ZnO | Solvent-free/TBAHS/50 °C/UI | 30 | 81 | This work |
6 | TiO2 | Solvent-free/TBAHS/50 °C/UI | 30 | 84 | This work |
7 | CaFe2O4 | Solvent-free/TBAHS/50 °C/UI | 30 | 85 | This work |
8 | CoFe2O4/Cu(OH)2 | Solvent-free/TBAHS/50 °C/UI | 30 | 89 | This work |
9 | CuFe2O4 | Solvent-free/TBAHS/50 °C/UI | 30 | 92 | This work |
10 | - | Solvent-free/TBAHS/50 °C/UI | 30 | 65 | This work |
Ligand | Ligand Structure | Optimized Geometry Energy (au) (DFT Studies) | Binding Affinity (kcal/mol) | ||
---|---|---|---|---|---|
For SARS-CoV-2 Main Protease (6LU7) | For S-Glyco-Protein (6VSB) | For Papain-like Protease (6WNC) | |||
DHPM1 | −1111.12 | −6.4 | −5.2 | −4.7 | |
DHPM2 | −1031.25 | −6.0 | −4.5 | −4.9 | |
DHPM3 | −1109.89 | −6.2 | −4.6 | −4.8 | |
DHPM4 | −1119.98 | −6.1 | −4.7 | −4.3 | |
DHPM5 | −1375.04 | −6.4 | −5.0 | −5.0 | |
DHPM6 | −1375.04 | −6.4 | −4.7 | −4.6 | |
DHPM7 | −1029.97 | −6.3 | −4.7 | −4.5 | |
DHPM8 | −1051.91 | −6.0 | −4.8 | −4.5 | |
DHPM9 | −1127.14 | −6.2 | −4.6 | −4.3 | |
DHPM10 | −1166.47 | −6.1 | −4.7 | −4.3 | |
DHPM11 | −1472.21 | −6.3 | −4.6 | −4.6 | |
DHPM12 | −1299.48 | −7.3 | −5.2 | −4.6 | |
DHPM13 | −1644.55 | −7.1 | −5.0 | −4.5 | |
Reference | Hydroxychloroquine | - | −6.5 | −6.0 | −6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carabineiro, S.A.C.; Dharma Rao, G.B.; Singh, L.; Anjaneyulu, B.; Afshari, M. CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies. Processes 2023, 11, 2294. https://doi.org/10.3390/pr11082294
Carabineiro SAC, Dharma Rao GB, Singh L, Anjaneyulu B, Afshari M. CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies. Processes. 2023; 11(8):2294. https://doi.org/10.3390/pr11082294
Chicago/Turabian StyleCarabineiro, Sónia A. C., Gullapalli B. Dharma Rao, Lakhwinder Singh, Bendi Anjaneyulu, and Mozhgan Afshari. 2023. "CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies" Processes 11, no. 8: 2294. https://doi.org/10.3390/pr11082294
APA StyleCarabineiro, S. A. C., Dharma Rao, G. B., Singh, L., Anjaneyulu, B., & Afshari, M. (2023). CuFe2O4 Magnetic Nanoparticles as Heterogeneous Catalysts for Synthesis of Dihydropyrimidinones as Inhibitors of SARS-CoV-2 Surface Proteins—Insights from Molecular Docking Studies. Processes, 11(8), 2294. https://doi.org/10.3390/pr11082294