Effect of Motor Installation Heights on the Performance of an Isolated Centrifugal Fan
Abstract
:1. Introduction
2. Experimental Methods and Numerical Calculations
2.1. Fan Geometry Parameter
2.2. Fan Test Method
2.3. Numerical Calculation Method
3. Results and Discussion
3.1. Experimental Validation for Modeling and Simulation
3.2. Effect of Smaller Flow Rate Conditions
3.3. Analysis of Calculation Results for Large Flow Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
D1 | impeller inlet diameter [mm] |
D2 | impeller outlet diameter [mm] |
d | impeller width [mm] |
p | translation pressure [pa] |
U | velocity vector [m/s] |
u2 | outlet velocity of the impeller [m2/s] |
Pt | total pressure [pa] |
Pst | static pressure [pa] |
Pd | dynamic pressure [pa] |
N | shaft power [W] |
Ne | effective power [W] |
Q | rate of flow [m3/s] |
η | static pressure efficiency [%] |
ρ | air density [kg/m3] |
ϕ | pressure coefficient |
φ | flow coefficient |
ν | viscosity coefficient |
References
- Jeon, W.H. A numerical study on the effects of design parameters on the performance and noise of a centrifugal fan. J. Sound Vib. 2003, 265, 221–230. [Google Scholar] [CrossRef]
- Carolus, T.H.; McLaughlin, D.K.; Basile, R. Experimental investigation of the unsteady discharge flow field and the noise of a centrifugal fan impeller. In Proceedings of the 7th International Congress on Sound and Vibration, Garmisch-Partenkirchen, Germany, 4–7 July 2000; pp. 1–8. [Google Scholar]
- Tsai, B.J.; Wu, C.L. Investigation of a miniature centrifugal fan. Appl. Therm. Eng. 2007, 27, 229–239. [Google Scholar] [CrossRef]
- Wolfram, D.; Carolus, T.H. Experimental and numerical investigation of the unsteady flow field and tone generation in an isolated centrifugal fan impeller. J. Sound Vib. 2010, 329, 4380–4397. [Google Scholar] [CrossRef]
- Ottersten, M.; Yao, H.D.; Davidson, L. Numerical and Experimental Study of Tonal Noise Sources at the Outlet of an Isolated Centrifugal Fan; Division of Fluid Dynamics, Department of Mechanics and Maritime Science, Chalmers University of Technology: Gothenburg, Sweden, 2020; pp. 1–24. [Google Scholar]
- Sandra, V.S.; Rafael, B.T.; Juan, P.H.C.; Carlos, S.M. Experiment determination of the tonal noise sources in a centrifugal fan. J. Sound Vib. 2006, 295, 781–796. [Google Scholar]
- Korakianitis, T.; Hamakhan, I.A.; Rezaienia, M.A.; Wheeler, A.P.S.; Avital, E.J.; Williams, J.J.R. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed urface curvature distribution blade design (CIRCLE) method. Appl. Energy 2012, 89, 215–227. [Google Scholar] [CrossRef]
- Jiří, P.; László, K.; Roman, G. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades. J. Therm. Sci. 2013, 22, 517–521. [Google Scholar]
- Wu, L.; Liu, X.; Wang, M. Effects of bionic volute tongue on aerodynamic performance and noise characteristics of centrifugal fan used in the air-conditioner. J. Bionic Eng. 2020, 17, 780–792. [Google Scholar] [CrossRef]
- Ni, J.; Liu, R.; Sun, Y. Multidisciplinary assessment of blade number and manufacturing parameters for the performance of centrifugal fans. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 235, 766–782. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Li, N.; Wang, L. Research on stress intensity factor and fatigue crack propagation rate of the general-purpose gondola car body. Trans. Can. Soc. Mech. Eng. 2021, 45, 297–307. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Liu, Q.; Zhang, B.; Fu, Q. Structural optimization of the heavy haul wagon body based on MPSO-BP algorithm. Trans. Can. Soc. Mech. Eng. 2020, 45, 461–472. [Google Scholar] [CrossRef]
- Pasquale, D.; Persico, G.; Rebay, S. Optimization of turbomachinery flow surfaces applying a CFD-based throughflow method. J. Turbomach. 2014, 136, 031013. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Z.; Li, G.; Ye, X.; Liu, Y.; Chen, Z.; Li, N. An Investigation on Optimized Performance of Voluteless Centrifugal Fans by a Class and Shape Transformation Function. Processes 2023, 11, 1751. [Google Scholar] [CrossRef]
- Ottersten, M.; Yao, H.D.; Davidson, L. Tonal noise of voluteless centrifugal fan generated by turbulence stemming from upstream inlet gap. Phys. Fluids 2021, 33, 075110. [Google Scholar] [CrossRef]
- Pérot, F.; Kim, M.S.; Goff, V.L.; Carniel, X.; Goth, Y.; Chassaignon, C. Numerical optimization of the tonal noise of a backward centrifugal fan using a flow obstruction. Noise Control Eng. J. 2013, 61, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.T. Impact of Fan Gap Flow on the Centrifugal Impeller Aerodynamics. J. Fluids Eng. 2010, 132, 091103. [Google Scholar] [CrossRef]
- Li, Z.; Dou, H.S.; Lin, P.; Wei, Y.; Chen, Y.; Lin, L.; Ye, X. Design for a Squirrel Cage Fan with Double Arc Blade. J. Appl. Fluid Mech. 2020, 13, 881–891. [Google Scholar] [CrossRef]
- Li, Z.; Ye, X.; Wei, Y. Investigation on Vortex Characteristics of a Multi-Blade Centrifugal Fan near Volute Outlet Region. Processes 2020, 8, 1240. [Google Scholar] [CrossRef]
- Li, Z.; Cao, W.; Ye, X.; Wei, Y. Experimental Investigation on the Noise Characteristics of a Squirrel-Cage Fan with Different Blade Lengths. Energies 2023, 16, 69. [Google Scholar] [CrossRef]
- Khan, N.S.; Hussanan, A.; Kumam, W.; Kumam, P.; Suttiarporn, P. Accessing the thermodynamics of Walter-B fluid with magnetic dipole effect past a curved stretching surface. ZAMM J. Appl. Math. Mech. 2023, e202100112. [Google Scholar] [CrossRef]
- Meneveau, C.; Lund, T.S.; Cabot, W.H. A Lagrangian Dynamic Subgrid Scale Model of Turbulence. J. Fluid Mech. 1996, 319, 353–385. [Google Scholar] [CrossRef] [Green Version]
- Piomelli, U. High Reynolds Number Calculations Using the Dynamic Subgrid Scale Stress Model. Phys. Fluids 1993, 5, 1484–1490. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.T.; Li, G.H.; Zhou, L.X. Four-way Coupled Modelling of Swirling Particle-laden Flow in Methane-central Coaxial Jets. Int. J. Heat Mass Transf. 2023, 214, 124342. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.X. A Novel Particle Subgrid Scale Modeling of Large Eddy Simulation for Swirling Particle-laden Turbulent Flow. Powder Technol. 2022, 402, 117348. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.X. Hydrodynamic Modeling of Non-swirling and Swirling Gas-particle Two-phase Turbulent Flow using Large Eddy Simulation. Process Saf. Environ. Prot. 2022, 161, 175–187. [Google Scholar] [CrossRef]
Parameter | Numerical Value |
---|---|
Inner diameter of impeller (D1) (mm) | 232 |
Outer diameter of impeller (D2) (mm) | 406 |
Blade inlet angle (deg.) | 10 |
Blade exit angle (deg.) | 24 |
Number of blades | 6 |
Impeller width (d) (mm) | 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Luo, P.; Zhu, M.; Chen, Z.; Liu, Y.; Li, G. Effect of Motor Installation Heights on the Performance of an Isolated Centrifugal Fan. Processes 2023, 11, 2116. https://doi.org/10.3390/pr11072116
Li Z, Luo P, Zhu M, Chen Z, Liu Y, Li G. Effect of Motor Installation Heights on the Performance of an Isolated Centrifugal Fan. Processes. 2023; 11(7):2116. https://doi.org/10.3390/pr11072116
Chicago/Turabian StyleLi, Zhehong, Ping Luo, Meijun Zhu, Ziyun Chen, Yang Liu, and Guohui Li. 2023. "Effect of Motor Installation Heights on the Performance of an Isolated Centrifugal Fan" Processes 11, no. 7: 2116. https://doi.org/10.3390/pr11072116
APA StyleLi, Z., Luo, P., Zhu, M., Chen, Z., Liu, Y., & Li, G. (2023). Effect of Motor Installation Heights on the Performance of an Isolated Centrifugal Fan. Processes, 11(7), 2116. https://doi.org/10.3390/pr11072116