Exploring the Properties and Potential Uses of Biocarbon from Spent Coffee Grounds: A Comparative Look at Dry and Wet Processing Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Preparation
2.2. Hydrochar Preparation by HTC and HTL
2.3. Biocarbon Materials Characterization
3. Results
3.1. Properties Related to Energy Application
3.2. Properties Related to Agricultural Application
3.2.1. pH and pHPCZ Values
3.2.2. Nutrient Content
3.2.3. Inorganics and Potentially Toxic Components
3.2.4. Surface and Morphological Properties
3.2.5. Functional Groups
3.3. Discussions on the Applications of SCG Biocarbon Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-Derived Biochar for Water Pollution Control and Sustainable Development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Shi, M.; Wang, X.; Shao, M.; Lu, L.; Ullah, H.; Zheng, H.; Li, F. Resource Utilization of Typical Biomass Wastes as Biochars in Removing Plasticizer Diethyl Phthalate from Water: Characterization and Adsorption Mechanisms. Front. Environ. Sci. Eng. 2022, 17, 5. [Google Scholar] [CrossRef]
- Sun, C.; Sun, J.; Gao, J.; Liu, J.; Yu, X.; Wang, Z.; Yang, X.; Ji, N. Comprehensive Application of Bio-Char and Nitrogen Fertilizer in Dry-Land Maize Cultivation. Sci. Rep. 2022, 12, 13478. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, E.; Mishra, R.; Lo, S.-L.; Kumar, S. A Green Approach towards Sorption of CO2 on Waste Derived Biochar. Environ. Res. 2022, 214, 113954. [Google Scholar] [CrossRef]
- Hu, Y.; Gallant, R.; Salaudeen, S.; Farooque, A.A.; He, S. Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel. Sustainability 2022, 14, 8818. [Google Scholar] [CrossRef]
- Nadarajah, K.; Bandala, E.R.; Zhang, Z.; Mundree, S.; Goonetilleke, A. Removal of Heavy Metals from Water Using Engineered Hydrochar: Kinetics and Mechanistic Approach. J. Water Process Eng. 2021, 40, 101929. [Google Scholar] [CrossRef]
- Rehman, A.; Nazir, G.; Rhee, K.Y.; Park, S.-J. Valorization of Orange Peel Waste to Tunable Heteroatom-Doped Hydrochar-Derived Microporous Carbons for Selective CO2 Adsorption and Separation. Sci. Total Environ. 2022, 849, 157805. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Chen, Y.; Syed-Hassan, S.S.A.; Li, Q.; Deng, Z.; Hu, X.; Xu, J.; Jiang, L.; Su, S.; Hu, S.; Wang, Y.; et al. Effects of Temperature and Aspect Ratio on Heterogeneity of the Biochar from Pyrolysis of Biomass Pellet. Fuel Process. Technol. 2022, 235, 107366. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of Different Biomass Species and Pyrolysis Temperatures on Heavy Metal Adsorption, Stability and Economy of Biochar. Ind. Crops Prod. 2022, 186, 115238. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A Review on Biochar Production from Different Biomass Wastes by Recent Carbonization Technologies and Its Sustainable Applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- Gajić, A.; Koch, H.-J. Sugar Beet (Beta vulgaris L.) Growth Reduction Caused by Hydrochar Is Related to Nitrogen Supply. J. Environ. Qual. 2012, 41, 1067–1075. [Google Scholar] [CrossRef]
- Luutu, H.; Rose, M.T.; McIntosh, S.; Van Zwieten, L.; Rose, T. Plant Growth Responses to Soil-Applied Hydrothermally-Carbonised Waste Amendments: A Meta-Analysis. Plant Soil 2022, 472, 1–15. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between Biochar Stability and Soil Organisms: Review and Research Needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Gurwick, N.P.; Moore, L.A.; Kelly, C.; Elias, P. A Systematic Review of Biochar Research, with a Focus on Its Stability in Situ and Its Promise as a Climate Mitigation Strategy. PLoS ONE 2013, 8, e75932. [Google Scholar] [CrossRef] [Green Version]
- Gronwald, M.; Vos, C.; Helfrich, M.; Don, A. Stability of Pyrochar and Hydrochar in Agricultural Soil—A New Field Incubation Method. Geoderma 2016, 284, 85–92. [Google Scholar] [CrossRef]
- Malghani, S.; Jüschke, E.; Baumert, J.; Thuille, A.; Antonietti, M.; Trumbore, S.; Gleixner, G. Carbon Sequestration Potential of Hydrothermal Carbonization Char (Hydrochar) in Two Contrasting Soils; Results of a 1-Year Field Study. Biol. Fertil. Soils 2015, 51, 123–134. [Google Scholar] [CrossRef]
- International Coffee Organization—Trade Statistics Tables. Available online: http://www.ico.org/trade_statistics.asp (accessed on 15 December 2019).
- Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Energy Quality of Pellets Produced from Coffee Residue: Characterization of the Products Obtained via Slow Pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M.; Cheng, Y.-L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy 2020, 147, 1380–1391. [Google Scholar] [CrossRef]
- Pacioni, T.R.; Soares, D.; Di Domenico, M.; Alves, J.L.F.; Virmond, E.; Moreira, R.d.F.P.M.; José, H.J. Kinetic Modeling of CO2 Gasification of Biochars Prepared from Brazilian Agro-Industrial Residues: Effect of Biomass Indigenous Mineral Content. Biomass Convers. Biorefin. 2021, 13, 6675–6688. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Odusote, J.K.; Ikubanni, P.P.; Lasode, O.A.; Malathi, M.; Paswan, D. The Ignitability, Fuel Ratio and Ash Fusion Temperatures of Torrefied Woody Biomass. Heliyon 2020, 6, e03582. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal Carbonization of Renewable Waste Biomass for Solid Biofuel Production: A Discussion on Process Mechanism, the Influence of Process Parameters, Environmental Performance and Fuel Properties of Hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Smart, J.P.; Riley, G.S. On the Effects of Firing Semi-Anthracite and Bituminous Coal under Oxy-Fuel Firing Conditions. Fuel 2011, 90, 2812–2816. [Google Scholar] [CrossRef]
- Massaya, J.; Pickens, G.; Mills-Lamptey, B.; Chuck, C.J. Enhanced Hydrothermal Carbonization of Spent Coffee Grounds for the Efficient Production of Solid Fuel with Lower Nitrogen Content. Energy Fuels 2021, 35, 9462–9473. [Google Scholar] [CrossRef]
- Fakudze, S.; Chen, J. A Critical Review on Co-Hydrothermal Carbonization of Biomass and Fossil-Based Feedstocks for Cleaner Solid Fuel Production: Synergistic Effects and Environmental Benefits. Chem. Eng. J. 2023, 457, 141004. [Google Scholar] [CrossRef]
- Chin-Pampillo, J.S.; Alfaro-Vargas, A.; Rojas, R.; Giacomelli, C.E.; Perez-Villanueva, M.; Chinchilla-Soto, C.; Alcañiz, J.M.; Domene, X. Widespread Tropical Agrowastes as Novel Feedstocks for Biochar Production: Characterization and Priority Environmental Uses. Biomass Convers. Biorefin. 2021, 11, 1775–1785. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of Feedstock Type, Production Method, and Pyrolysis Temperature on Biochar and Hydrochar Properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen Peroxide Modification Enhances the Ability of Biochar (Hydrochar) Produced from Hydrothermal Carbonization of Peanut Hull to Remove Aqueous Heavy Metals: Batch and Column Tests. Chem. Eng. J. 2012, 200–202, 673–680. [Google Scholar] [CrossRef]
- Thomas, J. Soil PH and the Availability of Plant Nutrients 2010. Available online: https://nutrientstewardship.org/implementation/soil-ph-and-the-availability-of-plant-nutrients/ (accessed on 15 November 2022).
- Saha, N.; Xin, D.; Chiu, P.C.; Reza, M.T. Effect of Pyrolysis Temperature on Acidic Oxygen-Containing Functional Groups and Electron Storage Capacities of Pyrolyzed Hydrochars. ACS Sustain. Chem. Eng. 2019, 7, 8387–8396. [Google Scholar] [CrossRef]
- Rens, H.; Bera, T.; Alva, A.K. Effects of Biochar and Biosolid on Adsorption of Nitrogen, Phosphorus, and Potassium in Two Soils. Water. Air. Soil Pollut. 2018, 229, 281. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; de Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of Biochar Derived from Wood and High-Nutrient Biomasses with the Aim of Agronomic and Environmental Benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [Green Version]
- Tahery, S.; Munroe, P.; Marjo, C.E.; Rawal, A.; Horvat, J.; Mohammed, M.; Webber, J.B.W.; Arns, J.-Y.; Arns, C.H.; Pan, G.; et al. A Comparison between the Characteristics of a Biochar-NPK Granule and a Commercial NPK Granule for Application in the Soil. Sci. Total Environ. 2022, 832, 155021. [Google Scholar] [CrossRef] [PubMed]
- Evaristo, R.B.W.; Ferreira, R.; Petrocchi Rodrigues, J.; Sabino Rodrigues, J.; Ghesti, G.F.; Silveira, E.A.; Costa, M. Multiparameter-Analysis of CO2/Steam-Enhanced Gasification and Pyrolysis for Syngas and Biochar Production from Low-Cost Feedstock. Energy Convers. Manag. X 2021, 12, 100138. [Google Scholar] [CrossRef]
- Hussain, N.; Chantrapromma, S.; Suwunwong, T.; Phoungthong, K. Cadmium (II) Removal from Aqueous Solution Using Magnetic Spent Coffee Ground Biochar: Kinetics, Isotherm and Thermodynamic Adsorption. Mater. Res. Express 2020, 7, 085503. [Google Scholar] [CrossRef]
- Krzyszczak, A.; Dybowski, M.P.; Czech, B. Formation of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Biochars: The Effect of Feedstock and Pyrolysis Conditions. J. Anal. Appl. Pyrolysis 2021, 160, 105339. [Google Scholar] [CrossRef]
- Lee, K.-T.; Cheng, C.-L.; Lee, D.-S.; Chen, W.-H.; Vo, D.-V.N.; Ding, L.; Lam, S.S. Spent Coffee Grounds Biochar from Torrefaction as a Potential Adsorbent for Spilled Diesel Oil Recovery and as an Alternative Fuel. Energy 2022, 239, 122467. [Google Scholar] [CrossRef]
- Fu, M.-M.; Mo, C.-H.; Li, H.; Zhang, Y.-N.; Huang, W.-X.; Wong, M.H. Comparison of Physicochemical Properties of Biochars and Hydrochars Produced from Food Wastes. J. Clean. Prod. 2019, 236, 117637. [Google Scholar] [CrossRef]
- Mukherjee, A.; Borugadda, V.B.; Dynes, J.J.; Niu, C.; Dalai, A.K. Carbon Dioxide Capture from Flue Gas in Biochar Produced from Spent Coffee Grounds: Effect of Surface Chemistry and Porous Structure. J. Environ. Chem. Eng. 2021, 9, 106049. [Google Scholar] [CrossRef]
- Tongcumpou, C.; Usapein, P.; Tuntiwiwattanapun, N. Complete Utilization of Wet Spent Coffee Grounds Waste as a Novel Feedstock for Antioxidant, Biodiesel, and Bio-Char Production. Ind. Crops Prod. 2019, 138, 111484. [Google Scholar] [CrossRef]
- Zhang, X. Characterization and Sulfonamide Antibiotics Adsorption Capacity of Spent Coffee Grounds Based Biochar and Hydrochar. Sci. Total Environ. 2020, 10, 137015. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dijkstra, F.A.; Liu, X.; Wang, Y.; Huang, J.; Lu, N. Effects of Biochar on Soil Microbial Biomass after Four Years of Consecutive Application in the North China Plain. PLoS ONE 2014, 9, e102062. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, X.; Yao, G.; Lin, Z.; Xu, L.; Jiang, Y.; Jin, Z.; Shan, S.; Ping, L. Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality. Sustainability 2022, 14, 10411. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, J.; Yi, Y. Biochar and Hydrochar Derived from Freshwater Sludge: Characterization and Possible Applications. Sci. Total Environ. 2021, 763, 144550. [Google Scholar] [CrossRef] [PubMed]
- Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy Metals Removal from Aqueous Environments by Electrocoagulation Process– a Systematic Review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.-F.; Zhu, S.-S.; Wang, R.-P.; Chen, Y.-D.; Show, P.-L.; Zhang, F.-F.; Ho, S.-H. Role of Biochar Surface Characteristics in the Adsorption of Aromatic Compounds: Pore Structure and Functional Groups. Chin. Chem. Lett. 2021, 32, 2939–2946. [Google Scholar] [CrossRef]
- Congsomjit, D.; Areeprasert, C. Hydrochar-Derived Activated Carbon from Sugar Cane Bagasse Employing Hydrothermal Carbonization and Steam Activation for Syrup Decolorization. Biomass Convers. Biorefin. 2021, 11, 2569–2584. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Role of Hydrochar Properties on the Porosity of Hydrochar-Based Porous Carbon for Their Sustainable Application. ACS Sustain. Chem. Eng. 2015, 3, 833–840. [Google Scholar] [CrossRef]
- Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J. Pore Classification in the Characterization of Porous Materials: A Perspective. Open Chem. 2007, 5, 385–395. [Google Scholar] [CrossRef]
- Phan, K.A.; Phihusut, D.; Tuntiwiwattanapun, N. Preparation of Rice Husk Hydrochar as an Atrazine Adsorbent: Optimization, Characterization, and Adsorption Mechanisms. J. Environ. Chem. Eng. 2022, 10, 107575. [Google Scholar] [CrossRef]
- Tan, G.; Sun, W.; Xu, Y.; Wang, H.; Xu, N. Sorption of Mercury (II) and Atrazine by Biochar, Modified Biochars and Biochar Based Activated Carbon in Aqueous Solution. Bioresour. Technol. 2016, 211, 727–735. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture (%) | Volatile Matter (%) | Fixed Carbon (%) | Ash (%) | Fuel Ratio |
---|---|---|---|---|---|
Original SCGs | 1.63 | 75.37 | 20.58 | 2.42 | 0.27 |
Torrefied SCGs | 0.59 | 61.54 | 36.37 | 1.51 | 0.59 |
Slow pyrolysis biochar | 0.97 | 10.91 | 85.85 | 2.27 | 7.87 |
HTC hydrochar | 0.42 | 64.19 | 33.14 | 2.25 | 0.52 |
HTL hydrochar | 0.3 | 48.77 | 49.21 | 1.72 | 1.01 |
Sample | C (%) | H (%) | N (%) | S (%) | O (%) | HHV (MJ/kg) | O/C Atomic Ratio | H/C Atomic Ratio |
---|---|---|---|---|---|---|---|---|
Original SCGs | 53.58 | 7.27 | 2.41 | 2.00 | 32.32 | 22.23 | 0.49 | 1.63 |
Torrefied SCGs | 65.18 | 7.25 | 3.00 | 1.98 | 21.08 | 27.56 | 0.26 | 1.33 |
Slow pyrolysis biochar | 78.05 | 3.96 | 4.26 | 1.02 | 10.44 | 30.44 | 0.12 | 0.61 |
HTC hydrochar | 67.24 | 7.74 | 2.49 | 1.93 | 18.35 | 30.70 | 0.23 | 1.38 |
HTL hydrochar | 72.81 | 7.50 | 3.23 | 2.02 | 12.72 | 32.33 | 0.15 | 1.24 |
pH | pHPZC | |
---|---|---|
Original SCGs | 4.89 | 5.53 |
Torrefied SCGs | 6.50 | 6.53 |
Slow pyrolysis biochar | 7.01 | 8.35 |
HTC hydrochar | 3.93 | 3.85 |
HTL hydrochar | 3.98 | 4.05 |
N (%) | P (%) | K (%) | |
---|---|---|---|
Original SCGs | 2.1 | 0.1 | 0.278 |
Torrefied SCGs | 2.9 | 0.155 | 0.424 |
Slow pyrolysis biochar | 4.14 | 0.343 | 0.962 |
HTC hydrochar | 2.68 | 0.062 | 0.118 |
HTL hydrochar | 3.01 | 0.131 | 0.08 |
Analytes (mg/kg) | SCGs | Torrefied SCGs | Slow Pyrolysis Biochar | HTC Hydrochar | HTL Hydrochar | CFIA * Max Level |
---|---|---|---|---|---|---|
Aluminum | 7.3 | 16.4 | 29.2 | 14.9 | 17.6 | |
Antimony | 0.06 | 0.07 | 0.09 | 0.03 | 0.05 | |
Arsenic | - | - | - | - | - | 75 |
Barium | 6.3 | 9.3 | 21.8 | 4.1 | 8.4 | |
Beryllium | - | - | ||||
Bismuth | - | - | ||||
Boron | 3.4 | 5.3 | 12.1 | 4.4 | 5.0 | |
Cadmium | 0.011 | 0.021 | 0.017 | 0.014 | 0.022 | 20 |
Calcium | 1250 | 1860 | 4200 | 960 | 2370 | |
Chromium | 0.4 | 0.3 | 1.2 | 0.4 | 1.8 | 1100 |
Cobalt | 0.13 | 0.20 | 0.43 | 0.17 | 0.47 | 150 |
Copper | 17.8 | 26.9 | 57.4 | 29.6 | 40.1 | 850 |
Iron | 91 | 87 | 157 | 59 | 78 | |
Lead | 0.02 | 0.06 | 0.09 | 21.7 | 164. | |
Lithium | - | - | - | - | - | |
Magnesium | 1340 | 1950 | 4410 | 563 | 555 | |
Manganese | 39.1 | 57.5 | 133. | 27.2 | 59.7 | |
Mercury | - | - | - | - | - | 5 |
Molybdenum | 0.12 | 0.17 | 0.42 | 0.57 | 3.23 | 20 |
Nickel | 0.7 | 1.3 | 3.2 | 4.2 | 30.4 | 180 |
Potassium | 3200 | 4780 | 11,400 | 1170 | 604 | |
Rubidium | 4.53 | 6.61 | 14.8 | 1.67 | 0.86 | |
Selenium | - | - | - | - | - | 14 |
Silver | - | - | - | 0.03 | 0.10 | |
Sodium | 90 | 130 | 270 | 40 | 20 | |
Strontium | 7.6 | 11.0 | 25.3 | 5.4 | 13.1 | |
Tellurium | - | - | - | - | - | |
Thallium | - | - | - | - | - | |
Tin | 0.20 | 0.25 | 0.31 | 0.19 | 0.44 | |
Uranium | - | - | - | 0.02 | 0.10 | |
Vanadium | - | - | - | 0.2 | 0.2 | |
Zinc | 7.2 | 11.6 | 26.4 | 10.0 | 12.6 | 1850 |
Samples | Specific Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
Original SCGs | 8.05 | 0.008 | 0.56 |
Torrefied SCGs | 8.53 | 0.007 | 0.86 |
Slow pyrolysis biochar | 4.17 | 0.006 | 2.24 |
HTC hydrochar | 15.15 | 0.067 | 7.82 |
HTL hydrochar | 7.74 | 0.022 | 4.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhao, Z.; Hu, Y.; Abbey, L.; Cesarino, I.; Goonetilleke, A.; He, Q. Exploring the Properties and Potential Uses of Biocarbon from Spent Coffee Grounds: A Comparative Look at Dry and Wet Processing Methods. Processes 2023, 11, 2099. https://doi.org/10.3390/pr11072099
Yang J, Zhao Z, Hu Y, Abbey L, Cesarino I, Goonetilleke A, He Q. Exploring the Properties and Potential Uses of Biocarbon from Spent Coffee Grounds: A Comparative Look at Dry and Wet Processing Methods. Processes. 2023; 11(7):2099. https://doi.org/10.3390/pr11072099
Chicago/Turabian StyleYang, Jie, Zeyuan Zhao, Yulin Hu, Lord Abbey, Ivana Cesarino, Ashantha Goonetilleke, and Quan He. 2023. "Exploring the Properties and Potential Uses of Biocarbon from Spent Coffee Grounds: A Comparative Look at Dry and Wet Processing Methods" Processes 11, no. 7: 2099. https://doi.org/10.3390/pr11072099
APA StyleYang, J., Zhao, Z., Hu, Y., Abbey, L., Cesarino, I., Goonetilleke, A., & He, Q. (2023). Exploring the Properties and Potential Uses of Biocarbon from Spent Coffee Grounds: A Comparative Look at Dry and Wet Processing Methods. Processes, 11(7), 2099. https://doi.org/10.3390/pr11072099