EW-YOLOv7: A Lightweight and Effective Detection Model for Small Defects in Electrowetting Display
Abstract
:1. Introduction
2. Research on Electrowetting Display Defect Detection Algorithm
2.1. Target Detection Algorithm
2.2. Introduction of Acmix Attention Mechanism
2.3. Integrating Lightweight Backbone Network Module EW-GhostNetV2
2.4. Introduction of Normalized Gaussian Wasserstein Distance
2.4.1. Bounding Box Two-Dimensional Gaussian Distribution Modeling
2.4.2. Normalized Gaussian Wasserstein Distance
2.5. Network Model Training and Evaluation Indicators
3. Experimental Results and Analysis
3.1. Dataset Analysis
- Functional display device: Figure 7a;
- Pixel wall distortion: Figure 7b, voltage alters droplet morphology, resulting in irregular pixel wall dimensions that impair display quality;
- Charge trapping: Figure 7c, ions in electrolyte solution accumulate on solid surface under electric field, forming charge layer that diminishes voltage-induced force on droplet, leading to contact angle saturation that constrains electrowetting modulation range;
- Conductive layer damage: Figure 7d, current produces heat that causes conductive layer to overheat and burn or melt, compromising electrowetting stability and reliability;
- Ink opening: Figure 7e, oil phase and water phase interface instability causes oil phase to separate into small droplets or films that affect display uniformity and clarity;
- Ink leakage: Figure 7f, insufficient interfacial tension between oil phase and water phase allows oil phase to escape from fluid chamber, resulting in display malfunction or damage to other components;
- Hydrophobic layer deterioration: Figure 7g, prolonged use erodes hydrophobicity of hydrophobic layer, preventing droplets from forming optimal contact angle on it, impairing electrowetting performance.
3.2. Experimental Results Analysis
3.2.1. Comparison of Verification Results of Different Detection Algorithms
3.2.2. Ablation Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beni, G.; Hackwood, S. Electro-wetting displays. Appl. Phys. Lett. 1981, 38, 207–209. [Google Scholar] [CrossRef]
- Jackel, J.L.; Hackwood, S.; Veselka, J.J.; Beni, G. Optical waveguide lightmode spectroscopy immunosensors. Appl. Opt. 1983, 22, 1765–1770. [Google Scholar] [CrossRef] [PubMed]
- Sondag-Huethorst, J.A.M.; Fokkink, L.G.J. Electrochemical detection of nitroaromatic compounds using a thin-layer cell with a carbon-fiber working electrode. J. Electroanal. Chem. 1994, 367, 49–57. [Google Scholar] [CrossRef]
- Berge, B. Electrocapilarity and wetting of insulator film by water. Comptes Rendus Acad. Sci. Paris Sci. II 1993, 317, 157–163. [Google Scholar]
- Giraldo, A.; Aubert, J.; Bergeron, N.; Li, F.; Slack, A.; van de Weijer, M. Transmissive Electrowetting-Based Displays for Portable Multi-Media Devices. SID Symp. Dig. Tech. Pap. 2009, 40, 479. [Google Scholar] [CrossRef]
- Ku, Y.S.; Kuo, S.W.; Huang, Y.S.; Chen, C.Y.; Lo, K.L.; Cheng, W.Y.; Shiu, J.W. Single-layered multi-color electrowetting display by using ink-jetprinting technology and fluid-motion prediction with simulation. J. Soc. Inf. Disp. 2011, 19, 488. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Steckl, A.J. Intense switchable fluorescence in light wave coupled electrowetting devices. Appl. Phys. Lett. 2005, 86, 011105. [Google Scholar] [CrossRef]
- He, T.; Jin, M.; Eijkel, J.C.; Zhou, G.; Shui, L.L. Two-phase microfluidics in electrowetting displays and its effect on optical performance. Biomicrofluidics 2016, 10, 011908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qinkai, L.; Shanling, L.; Zhixian, L.; Zheliang, C.; Tiantian, L.; Biao, T. Electrowetting defect image segmentation based on improved Otsu method. Opto-Electron Eng. 2020, 47, 190388. [Google Scholar] [CrossRef]
- Xiong, L.; Liao, Q.; Lin, S.; Lin, Z.; Guo, T. Defect Detection of Electrowetting Display Based on Histogram Gradient Weighting. Laser Optoelectron. Prog. 2021, 58, 1210003. (In Chinese) [Google Scholar]
- Chang, Y.C.; Chang, K.H.; Meng, H.M.; Chiu, H.C. A Novel Multicategory Defect Detection Method Based on the Convolutional Neural Network Method for TFT-LCD Panels. Math. Probl. Eng. 2022, 2022, 6505372. [Google Scholar] [CrossRef]
- Çelik, A.; Küçükmanisa, A.; Sümer, A.; Çelebi, A.T.; Urhan, O. A real-time defective pixel detection system for LCDs using deep learning based object detectors. J. Intell. Manuf. 2022, 33, 985–994. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2det: A single-shot object detector based on multi-level feature pyramid network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9259–9266. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Yi, L.; Biao, T.; Guisong, Y.; Yuanyuan, G.; Linwei, L.; Alex, H. Progress in Advanced Properties of Electrowetting Displays. Micromachines 2021, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.J.; Luo, J.K.; Zhao, W.W.; Cao, Y.; Lin, W.J.; Zhou, G.F. A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. Opt. Rev. 2018, 25, 18–26. [Google Scholar] [CrossRef]
- Chiang, H.-C.; Tsai, Y.-H.; Yan, Y.-J.; Huang, T.-W.; Mang, O.-Y. Oil Defect Detection of Electrowetting Display. In Optical Manufacturing and Testing XI; Fähnle, O.W., Williamson, R., Kim, D.W., Eds.; SPIE: Washington, DC, USA, 2015. [Google Scholar]
- Luo, Z.; Peng, C.; Liu, Y.; Liu, B.; Zhou, G.; Liu, S.; Chen, N. A Low-Cost Drive and Detection Scheme for Electrowetting Display. Processes 2023, 11, 586. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: New York, NY, USA, 2015; Volume 39, pp. 1137–1149. [Google Scholar]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Wang, C.; Bochkovskiy, A.; Liao, H.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:abs/2207.02696. [Google Scholar]
Classes | Total | Train | Test |
---|---|---|---|
Burnt | 720 | 576 | 144 |
Charge Trapping | 720 | 576 | 144 |
Deformation | 720 | 576 | 144 |
Degradation | 720 | 576 | 144 |
Oil Leakage | 720 | 576 | 144 |
Oil Splitting | 720 | 576 | 144 |
Normal | 720 | 576 | 144 |
Total | 5040 | 4032 | 1008 |
Models | Precision | Recall | mAP | Param | Interface Time (ms) |
---|---|---|---|---|---|
Faster RCNN | 0.635 | 0.821 | 0.693 | 250.69 M | 230.4 |
SSD | 0.714 | 0.863 | 0.756 | 98.48 M | 70.6 |
YOLOv5 | 0.766 | 0.856 | 0.769 | 27.56 M | 38.9 |
YOLOv7 | 0.826 | 0.884 | 0.823 | 37.22 M | 50.2 |
YOLOv7-tiny | 0.659 | 0.786 | 0.485 | 6.17 M | 24.3 |
EW-YOLOv7 | 0.869 | 1.000 | 0.895 | 30.07 M | 35.9 |
EW-YOLOv7-tiny | 0.814 | 0.966 | 0.787 | 6.03 M | 20.6 |
Method | ACmix | GhostNetV2 | NGWD | Precision | Recall | mAP |
---|---|---|---|---|---|---|
YOLOv7 | × | × | × | 0.826 | 0.884 | 0.823 |
YOLOv7 | √ | × | × | 0.837 | 1.000 | 0.857 (+4.1%) |
YOLOv7 | × | √ | × | 0.835 | 0.869 | 0.831 (+0.9%) |
YOLOv7 | × | × | √ | 0.816 | 1.000 | 0.842 (+2.3%) |
YOLOv7 | √ | √ | × | 0.874 | 1.000 | 0.868 (+5.4%) |
YOLOv7 | √ | × | √ | 0.833 | 0.943 | 0.882 (+7.1%) |
YOLOv7 | × | √ | √ | 0.863 | 0.912 | 0.845 (+2.6%) |
YOLOv7 | √ | √ | √ | 0.869 | 1.000 | 0.895 (+8.7%) |
Method | ACmix | GhostNetV2 | NGWD | Param | Weight (MB) | Interface Time (ms) | GFLOPS |
---|---|---|---|---|---|---|---|
YOLOv7 | × | × | × | 37.22 M | 74.9 | 50.2 | 103.3 |
YOLOv7 | √ | × | × | 38.43 M | 75.6 | 53.6 | 103.3 |
YOLOv7 | × | √ | × | 30.02 M | 53.4 | 35.3 | 36.8 |
YOLOv7 | × | × | √ | 39.22 M | 76.8 | 55.7 | 103.3 |
YOLOv7 | √ | √ | × | 30.08 M | 53.7 | 37.4 | 36.8 |
YOLOv7 | √ | × | √ | 40.27 M | 79.4 | 57.6 | 103.3 |
YOLOv7 | × | √ | √ | 30.04 M | 54.3 | 36.7 | 36.8 |
YOLOv7 | √ | √ | √ | 30.07 M | 53.2 | 35.9 | 36.8 |
Method | ACmix | GhostNetV2 | NGWD | AP | ||
---|---|---|---|---|---|---|
Normal | Charge Trapping | Degradation | ||||
YOLOv7 | × | × | × | 0.926 | 0.388 | 0.497 |
YOLOv7 | √ | × | × | 0.829 | 0.657 | 0.746 |
YOLOv7 | × | √ | × | 0.953 | 0.448 | 0.572 |
YOLOv7 | × | × | √ | 0.921 | 0.578 | 0.622 |
YOLOv7 | √ | √ | × | 0.921 | 0.674 | 0.746 |
YOLOv7 | √ | × | √ | 0.879 | 0.679 | 0.783 |
YOLOv7 | × | √ | √ | 0.943 | 0.647 | 0.686 |
YOLOv7 | √ | √ | √ | 0.926 | 0.695 | 0.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Chen, N.; Wu, J.; Xv, Z.; Liu, S.; Luo, Z. EW-YOLOv7: A Lightweight and Effective Detection Model for Small Defects in Electrowetting Display. Processes 2023, 11, 2037. https://doi.org/10.3390/pr11072037
Zheng Z, Chen N, Wu J, Xv Z, Liu S, Luo Z. EW-YOLOv7: A Lightweight and Effective Detection Model for Small Defects in Electrowetting Display. Processes. 2023; 11(7):2037. https://doi.org/10.3390/pr11072037
Chicago/Turabian StyleZheng, Zihan, Ningxia Chen, Jianhao Wu, Zhixuan Xv, Shuangyin Liu, and Zhijie Luo. 2023. "EW-YOLOv7: A Lightweight and Effective Detection Model for Small Defects in Electrowetting Display" Processes 11, no. 7: 2037. https://doi.org/10.3390/pr11072037
APA StyleZheng, Z., Chen, N., Wu, J., Xv, Z., Liu, S., & Luo, Z. (2023). EW-YOLOv7: A Lightweight and Effective Detection Model for Small Defects in Electrowetting Display. Processes, 11(7), 2037. https://doi.org/10.3390/pr11072037