Use of Potential Immobilized Enzymes for the Modification of Liquid Foods in the Food Industry
Abstract
:1. Introduction
2. Enzymes and Classification
3. Enzymes in Food Processing
3.1. Enzymes in Fruit and Vegetable Industry
3.2. Enzymes in Brewing Industry
3.3. Enzymes in Dairy Industry
4. Immobilized Enzymes and Their Methods
5. Immobilized Enzyme Technology for Food Application
5.1. Immobilized Enzymes in the Fruit and Vegetable Industry
5.2. Immobilized Enzymes in the Brewing Industry
5.3. Immobilized Enzymes in Dairy Industry
5.4. Immobilized Enzymes in the Functional Food Industry
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guisan, J.M. Immobilization of Enzymes as the 21st Century Begins. Phytoremediation 2006, 2006, 1–13. [Google Scholar] [CrossRef]
- Sewalt, V.; Shanahan, D.; Gregg, L.; La Marta, J.; Carillo, R. The Generally Recognized as Safe (GRAS) Process for Industrial Microbial Enzymes. Ind. Biotechnol. 2016, 12, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Raveendran, S.; Parameswaran, B.; Ummalyma, S.B.; Abraham, A.; Mathew, A.K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of Microbial Enzymes in Food Industry. Food Technol. Biotechnol. 2018, 56, 16. [Google Scholar] [CrossRef]
- Gurung, N.; Ray, S.; Bose, S.; Rai, V. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed Res. Int. 2013, 2013, 329121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Guisan, J.M.; López-Gallego, F.; Bolivar, J.M.; Rocha-Martín, J.; Fernandez-Lorente, G. The Science of Enzyme Immobilization. In Immobilization of Enzymes and Cells: Methods and Protocols; Guisan, J.M., Bolivar, J.M., López-Gallego, F., Rocha-Martín, J., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; pp. 1–26. ISBN 978-1-07-160215-7. [Google Scholar]
- Singh, P.; Kumar, S. Microbial Enzyme in Food Biotechnology. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 19–28. ISBN 978-0-12-813280-7. [Google Scholar]
- Hunter, T. Protein Kinases and Phosphatases: The Yin and Yang of Protein Phosphorylation and Signaling. Cell 1995, 80, 225–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, E. Einfluss Der Configuration Suf Die Wirkung Der Enzyme. Berichte Dtsch. Chem. Ges. 1963, 27, 2985–2993. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.J.M.; Holliday, G.L.; Furnham, N.; Tyzack, J.D.; Ferris, K.; Thornton, J.M. Mechanism and Catalytic Site Atlas (M-CSA): A Database of Enzyme Reaction Mechanisms and Active Sites. Nucleic Acids Res. 2018, 46, D618–D623. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.J. Enzyme Nomenclature. Recommendations 1992. Supplement: Corrections and Additions. Eur. J. Biochem. 1994, 223, 1. [Google Scholar] [CrossRef]
- McDonald, A.G.; Tipton, K.F. Enzyme Nomenclature and Classification: The State of the Art. FEBS J. 2023, 290, 2214–2231. [Google Scholar] [CrossRef]
- Barrett, A.J. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Eur. J. Biochem. 1997, 250, 1–6. [Google Scholar]
- Whitaker, J.R.; Voragen, A.G.J.; Wong, D.W.S. History of Enzymology with Emphasis on Food Production; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-429-22254-2. [Google Scholar]
- Chaudhary, S.; Sagar, S.; Kumar, M.; Sengar, R.S.; Tomar, A. The Use of Enzymes in Food Processing: A Review. South Asian J. Food Technol. Environ. 2015, 1, 190–210. [Google Scholar] [CrossRef]
- Toushik, S.H.; Lee, K.T.; Lee, J.S.; Kim, K.S. Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries. J. Food Sci. 2017, 82, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Kuhad, R.C.; Singh, A. Biotechnology for Environmental Management and Resource Recovery; Singh, A., Ed.; Springer: New Delhi, India, 2013. [Google Scholar]
- Hadj-Taieb, N.; Grati, N.; Ayadi, M.; Attia, I.; Bensalem, H.; Gargouri, A. Optimisation of Olive Oil Extraction and Minor Compounds Content of Tunisian Olive Oil Using Enzymatic Formulations during Malaxation. Biochem. Eng. J. 2012, 62, 79–85. [Google Scholar] [CrossRef]
- Chiacchierini, E.; Mele, G.; Restuccia, D.; Vinci, G. Impact Evaluation of Innovative and Sustainable Extraction Technologies on Olive Oil Quality. Trends Food Sci. Technol. 2007, 18, 299–305. [Google Scholar] [CrossRef]
- Xiang, W.; Wang, H.W.; Sun, D.W. Phytohormones in Postharvest Storage of Fruit and Vegetables: Mechanisms and Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2969–2983. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.P.; Patel, H.; Sharma, S. Enzymatic Extraction and Clarification of Juice from Various Fruits—A Review. Trends Post Harvest Technol. 2014, 2, 1–14. [Google Scholar] [CrossRef]
- Gomaa, A.; Gomaa, A.M. Application of Enzymes in Brewing. J. Nutr. Food Sci. Forecast 2018, 1, 1002. [Google Scholar]
- Ozatay, S. Recent Applications of Enzymes in Food Industry. J. Curr. Res. Eng. Sci. Technol. 2020, 6, 17–30. [Google Scholar] [CrossRef]
- Blanco, C.A.; Caballero, I.; Barrios, R.; Rojas, A. Innovations in the Brewing Industry: Light Beer. Int. J. Food Sci. Nutr. 2014, 65, 655–660. [Google Scholar] [CrossRef]
- Owades, J.L.; Francisco, S.; Koch, C.J. Preparation of Low Calorie Beer. 1989. Available online: https://patents.google.com/patent/US4837034A/en (accessed on 10 June 2023).
- Gomes Gonçalves, P. Sintesis Heterologa de Quimosina Bovina En Escherichia coli Para Su Uso En Alimentacion. 2022. Available online: https://microbio.csic.es/wp-content/uploads/2021/09/Poster_CIALForum2018_05.pdf (accessed on 10 June 2023).
- Afsharnezhad, M.; Shahangian, S.S.; Sariri, R. A Novel Milk-Clotting Cysteine Protease from Ficus johannis: Purification and Characterization. Int. J. Biol. Macromol. 2019, 121, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Lazarte, A.; Moreno, F.J.; Villamiel, M. Application of a Commercial Digestive Supplement Formulated with Enzymes and Probiotics in Lactase Non-Persistence Management. Food Funct. 2018, 9, 4642–4650. [Google Scholar] [CrossRef] [Green Version]
- Dekker, P.J.T.; Koenders, D.; Bruins, M.J. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shen, Y.; Xu, J. A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing. Foods 2023, 12, 1704. [Google Scholar] [CrossRef] [PubMed]
- Arroyo Sánchez, M. Inmovilización de enzimas: Fundamentos, métodos y aplicaciones. Ars Pharm. 1998, 39, 23–39. [Google Scholar]
- Taheri-Kafrani, A.; Kharazmi, S.; Nasrollahzadeh, M.; Soozanipour, A.; Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H.A.; Razmjou, A.; Yek, S.M.G.; Varma, R.S. Recent Developments in Enzyme Immobilization Technology for High-Throughput Processing in Food Industries. Crit. Rev. Food Sci. Nutr. 2021, 61, 3160–3196. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Andreescu, S.; Bucur, B.; Marty, J.-L. Affinity Immobilization of Tagged Enzymes. In Immobilization of Enzymes and Cells; Guisan, J.M., Ed.; Methods in BiotechnologyTM; Humana Press: Totowa, NJ, USA, 2006; pp. 97–106. ISBN 978-1-59745-053-9. [Google Scholar]
- Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 2019, 67, 11553–11567. [Google Scholar] [CrossRef]
- Kilara, A.; Shahani, K.M.; Shukla, T.P. The Use of Immobilized Enzymes in the Food Industry: A Review. Crit. Rev. Food Sci. Nutr. 1979, 12, 161–198. [Google Scholar] [CrossRef]
- Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech 2013, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lindeque, R.M.; Woodley, J.M. Reactor Selection for Effective Continuous Biocatalytic Production of Pharmaceuticals. Catalysts 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Benucci, I.; Mazzocchi, C.; Lombardelli, C.; Cacciotti, I.; Esti, M. Multi-Enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties. Food Bioprocess Technol. 2019, 12, 1559–1572. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kim, Y.K.; Khan, M.; Lee, S.H.; Choi, Y.H.; Cho, S.S.; Park, C.; Yoo, J.C. Purification and Identification of Novel Alkaline Pectinase PNs31 from Bacillus Subtilis CBS31 and Its Immobilization for Bioindustrial Applications. Korean J. Chem. Eng. 2020, 37, 1942–1950. [Google Scholar] [CrossRef]
- Costa, G.P.; Spolidoro, L.S.; Manfroi, V.; Rodrigues, R.C.; Hertz, P.F. α-Acetolactate Decarboxylase Immobilized in Chitosan: A Highly Stable Biocatalyst to Prevent off-Flavor in Beer. Biotechnol. Prog. 2022, 38, e3295. [Google Scholar] [CrossRef]
- García-García, P.; Rocha-Martin, J.; Fernandez-Lorente, G.; Guisan, J.M. Co-Localization of Oxidase and Catalase inside a Porous Support to Improve the Elimination of Hydrogen Peroxide: Oxidation of Biogenic Amines by Amino Oxidase from Pisum Sativum. Enzyme Microb. Technol. 2018, 115, 73–80. [Google Scholar] [CrossRef]
- Ke, P.; Zeng, D.; Xu, K.; Cui, J.; Li, X.; Wang, G. Synthesis and Characterization of a Novel Magnetic Chitosan Microsphere for Lactase Immobilization. Colloids Surf. Physicochem. Eng. Asp. 2020, 606, 125522. [Google Scholar] [CrossRef]
- Guan, T.; Liu, B.; Wang, R.; Huang, Y.; Luo, J.; Li, Y. The Enhanced Fatty Acids Flavor Release for Low-Fat Cheeses by Carrier Immobilized Lipases on O/W Pickering Emulsions. Food Hydrocoll. 2021, 116, 106651. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, H.; Shi, H.; Wang, F.; Li, X. Green Synthesis of Conjugated Linoleic Acids from Plant Oils Using a Novel Synergistic Catalytic System. J. Agric. Food Chem. 2017, 65, 5322–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Quinto, E.; Garcia-Garcia, P.; Guisan, J.M.; Fernandez-Lorente, G. Enzymatic Synthesis of Mono- and Disubstituted Phospholipids by Direct Condensation of Oleic Acid and Glycerophosphocholine with Immobilized Lipases and Phospholipase. Food Chem. 2023, 401, 134109. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhang, Y.; Simpson, B. Food Enzymes Immobilization: Novel Carriers, Techniques and Applications. Curr. Opin. Food Sci. 2022, 43, 27–35. [Google Scholar] [CrossRef]
- Gómez, J.L.; Bódalo, A.; Gómez, E.; Hidalgo, A.M.; Gómez, M.; Murcia, M.D. Experimental Behaviour and Design Model of a Fluidized Bed Reactor with Immobilized Peroxidase for Phenol Removal. Chem. Eng. J. 2007, 127, 47–57. [Google Scholar] [CrossRef]
- Benucci, I.; Caso, M.C.; Bavaro, T.; Masci, S.; Keršienė, M.; Esti, M. Prolyl Endopeptidase from Aspergillus Niger Immobilized on a Food-Grade Carrier for the Production of Gluten-Reduced Beer. Food Control 2020, 110, 106987. [Google Scholar] [CrossRef]
- Cardoso, F.; Koblitz, M.; Dellamora-Ortiz, G.; Carvalho, J.; Carvalho, L. Study of the Parameters Used in the Encapsulation of Commercial Pectinase in Calcium Alginate and Its Effect on Its Catalytic Activity. Food Sci. Technol. 2019, 39, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, R.A.; Van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diano, N.; Grimaldi, T.; Bianco, M.; Rossi, S.; Gabrovska, K.; Yordanova, G.; Godjevargova, T.; Grano, V.; Nicolucci, C.; Mita, L.; et al. Apple Juice Clarification by Immobilized Pectolytic Enzymes in Packed or Fluidized Bed Reactors. J. Agric. Food Chem. 2008, 56, 11471–11477. [Google Scholar] [CrossRef]
- Bashir, N.; Sood, M.; Bandral, J.D. Enzyme Immobilization and Its Applications in Food Processing: A Review. Int. J. Chem. Stud. 2020, 8, 254–261. [Google Scholar] [CrossRef]
- Dal Magro, L.; Pessoa, J.P.S.; Klein, M.P.; Fernandez-Lafuente, R.; Rodrigues, R.C. Enzymatic Clarification of Orange Juice in Continuous Bed Reactors: Fluidized-Bed versus Packed-Bed Reactor. Catal. Today 2021, 362, 184–191. [Google Scholar] [CrossRef]
- Cappannella, E.; Benucci, I.; Lombardelli, C.; Liburdi, K.; Bavaro, T.; Esti, M. Immobilized Lysozyme for the Continuous Lysis of Lactic Bacteria in Wine: Bench-Scale Fluidized-Bed Reactor Study. Food Chem. 2016, 210, 49–55. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Naturally-Derived Biopolymers: Potential Platforms for Enzyme Immobilization. Int. J. Biol. Macromol. 2019, 130, 462–482. [Google Scholar] [CrossRef]
- García-García, P.; Rocha-Martin, J.; Guisan, J.M.; Fernandez-Lorente, G. Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain. Catalysts 2020, 10, 810. [Google Scholar] [CrossRef]
- García-García, P.; Guisan, J.M.; Fernandez-Lorente, G. A Mild Intensity of the Enzyme-Support Multi-Point Attachment Promotes the Optimal Stabilization of Mesophilic Multimeric Enzymes: Amine Oxidase from Pisum sativum. J. Biotechnol. 2020, 318, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Misselwitz, B.; Pohl, D.; Frühauf, H.; Fried, M.; Vavricka, S.R.; Fox, M. Lactose Malabsorption and Intolerance: Pathogenesis, Diagnosis and Treatment. United Eur. Gastroenterol. J. 2013, 1, 151–159. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Wu, M.; Huan, W.; Li, J. Magnetic Graphene Oxide Nanocomposites as an Effective Support for Lactase Immobilization with Improved Stability and Enhanced Photothermal Enzymatic Activity. New J. Chem. 2021, 45, 5939–5948. [Google Scholar] [CrossRef]
- Salgado, C.A.; dos Santos, C.I.A.; Vanetti, M.C.D. Microbial Lipases: Propitious Biocatalysts for the Food Industry. Food Biosci. 2022, 45, 101509. [Google Scholar] [CrossRef]
- Narwal, R.K.; Bhushan, B.; Pal, A.; Malhotra, S.P.; Kumar, S.; Saharan, V. Inactivation Thermodynamics and Iso-Kinetic Profiling for Evaluating Operational Suitability of Milk Clotting Enzyme Immobilized in Composite Polymer Matrix. Int. J. Biol. Macromol. 2016, 91, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Memarpoor-Yazdi, M.; Karbalaei-Heidari, H.R.; Khajeh, K. Production of the Renewable Extremophile Lipase: Valuable Biocatalyst with Potential Usage in Food Industry. Food Bioprod. Process. 2017, 102, 153–166. [Google Scholar] [CrossRef]
- Shehata, M.G.; Abd El-Aziz, N.M.; Darwish, A.G.; El-Sohaimy, S.A. Lacticaseibacillus Paracasei KC39 Immobilized on Prebiotic Wheat Bran to Manufacture Functional Soft White Cheese. Fermentation 2022, 8, 496. [Google Scholar] [CrossRef]
- Baianu, I.C.; Lozano, P.R.; Prisecaru, V.I.; Lin, H.C. Applications of Novel Techniques to Health Foods, Medical and Agricultural Biotechnology. arXiv 2004. [Google Scholar] [CrossRef]
- Garcia, H.S.; Arcos, J.A.; Keough, K.J.; Hill, C.G. Immobilized Lipase-Mediated Acidolysis of Butteroil with Conjugated Linoleic Acid: Batch Reactor and Packed Bed Reactor Studies. J. Mol. Catal. B Enzym. 2001, 11, 623–632. [Google Scholar] [CrossRef]
- Mazza, M.; Pomponi, M.; Janiri, L.; Bria, P.; Mazza, S. Omega-3 Fatty Acids and Antioxidants in Neurological and Psychiatric Diseases: An Overview. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 12–26. [Google Scholar] [CrossRef]
- Akanbi, T.O.; Barrow, C.J. Candida Antarctica Lipase A Effectively Concentrates DHA from Fish and Thraustochytrid Oils. Food Chem. 2017, 229, 509–516. [Google Scholar] [CrossRef]
- Castejón, N.; Señoráns, F.J. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oil, Algae and Other New Omega-3 Sources: A Review. New Biotechnol. 2020, 57, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, S.; Guisan, J.M.; Fernandez-Lorente, G. Selective Ethanolysis of Fish Oil Catalyzed by Immobilized Lipases. J. Am. Oil Chem. Soc. 2014, 91, 63–69. [Google Scholar] [CrossRef]
- Moreno-Perez, S.; Luna, P.; Señorans, F.J.; Guisan, J.M.; Fernandez-Lorente, G. Enzymatic Synthesis of Triacylglycerols of Docosahexaenoic Acid: Transesterification of Its Ethyl Esters with Glycerol. Food Chem. 2015, 187, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaki, T.; Haniu, H.; Matsuda, Y.; Tsukahara, T. Lysophospholipids–Potent Candidates for Brain Food, Protects Neuronal Cells against α-Synuclein Aggregation. Biomed. Pharmacother. 2022, 156, 113891. [Google Scholar] [CrossRef] [PubMed]
Enzyme Type | EC | Reaction | Examples |
---|---|---|---|
Oxidoreductase | EC1 | Oxidation reactions involve the transfer of electrons from one molecule to another | Lipoxidases Dehydrogenases Glucose oxidase |
Transferase | EC2 | They catalyze the transfer of groups of atoms from one molecule to another | Aminotransferase Transaminase |
Hydrolase | EC3 | Hydrolysis reactions involve the cleavage of substrates by water | Lactase Proteases Trypsin |
Lyase | EC4 | Catalyze the addition of groups to double bonds or the formation of double bonds via the removal of groups | Pectate lyases Decarboxylase Hydratases |
Isomerase | EC5 | Catalyze the transfer of groups from one position to another on the same molecule | Topoisomerase Glucose isomerase |
Ligase | EC6 | They catalyze the joining of two molecules to form a new bond | Glutathione synthase Aminoacyl tRNA synthetase |
Translocases | EC 7 | Catalyze the movement of ions or molecules across membranes or their separation within membranes | Ubiquinone reductase ATP synthase Ascorbate ferrireductase |
Application in the Food Industry | Enzyme | Support | Immobilization | Reference |
---|---|---|---|---|
Clarification of pomegranate juice | Protease + Pectinase (multienzymatic system) | Chitosan beads | Covalent | [39] |
Juice processing | Pectinase | Calcium alginate beads | Ionic | [40] |
Beer off-flavor prevention | α-acetolactate decarboxylase | Glutaraldehyde-activated chitosan beads | Covalent | [41] |
Elimination of biogenic amines in wine | Amine oxidase + Catalase (multienzymatic system) | Glyoxyl–agarose 6BCL | Multipoint covalent | [42] |
Lactose-free milk production | β-galactosidase | Magnetic chitosan microsphere | Cross-linking | [43] |
Low-fat cheese production | Lipase | α-lac nanotubes | Cross-linking | [44] |
Conjugated linoleic acid production | Isomerase + Lipase | D301R + IRA-93 | Covalent | [45] |
Functional omega-3 ingredients | Phospholipase | Immobeads-C18 | Adsorption | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Quinto, E.; Aranda-Cañada, R.; García-García, P.; Fernández-Lorente, G. Use of Potential Immobilized Enzymes for the Modification of Liquid Foods in the Food Industry. Processes 2023, 11, 1840. https://doi.org/10.3390/pr11061840
Garcia-Quinto E, Aranda-Cañada R, García-García P, Fernández-Lorente G. Use of Potential Immobilized Enzymes for the Modification of Liquid Foods in the Food Industry. Processes. 2023; 11(6):1840. https://doi.org/10.3390/pr11061840
Chicago/Turabian StyleGarcia-Quinto, Ernestina, Raquel Aranda-Cañada, Paz García-García, and Gloria Fernández-Lorente. 2023. "Use of Potential Immobilized Enzymes for the Modification of Liquid Foods in the Food Industry" Processes 11, no. 6: 1840. https://doi.org/10.3390/pr11061840