Integrated Geophysical Prediction of Goaf and Water Accumulation in Pingshuo Dong Open-Cut Mine with Ultrashallow and High Drops
Abstract
1. Introduction
2. Geological Background and Engineering Geological Conditions
3. Methods
3.1. Attribute-Based Predicted Multiparameter Analysis for Goaf Prediction
3.2. TEM-Based Apparent Resistivity Prediction for Water Accumulation Identification
4. Application and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gui, H.; Qiu, H.; Qiu, W.; Tong, S.; Zhang, H. Overview of goaf water hazards control in China coalmines. Arab. J. Geosci. 2018, 11, 49. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, M.; Geng, Y.; Tao, J. Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China. Energy Policy 2011, 39, 3029–3032. [Google Scholar] [CrossRef]
- He, H.; Yu, W.; Wang, J.; Wen, K. Application research of high density resistivity method to karst geological exploration in mining area. In Proceedings of the 3rd International Conference on Environmental & Engineering Geophysics, Wuhan, China, 15–18 June 2008; pp. 385–388. [Google Scholar]
- Hu, G.; Su, J.; Zhao, N. Application of three dimensional laser scanning technology in Pingshuo open-pit mine goaf detection. Opencast Min. Technol. 2015, 7, 61–63, (In Chinese with English abstract). [Google Scholar]
- Yang, D.; Guo, W.; Tan, Y. Application of magnetotelluric method to the detection of overburden failure height in shallow seam mining. Arab. J. Geosci. 2018, 11, 350. [Google Scholar] [CrossRef]
- Lu, T.; Liu, S.D.; Wang, B.; Wu, R.; Hu, X. A review of geophysical exploration technology for mine water disaster in China: Applications and trends. Mine Water Environ. 2017, 36, 331–340. [Google Scholar] [CrossRef]
- Chang, J.; Yu, J.; Liu, Z. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf. Appl. Geophys. 2016, 13, 539–552. [Google Scholar] [CrossRef]
- Su, B.; Yu, J.; Sheng, C. On the borehole electromagnetic method for exploration of coal mining goaf. Elektron. Elektrotech. 2016, 22, 37–40. [Google Scholar] [CrossRef][Green Version]
- Yan, S.; Xue, G.; Qiu, W.; Li, H.; Zhong, H. Feasibility of central loop TEM method for prospecting multilayer water-filled goaf. Appl. Geophys. 2016, 13, 587–597. [Google Scholar] [CrossRef]
- Dam, J.; Meulenkamp, J. Some results of the geo-electrical resistivity method in ground water investigations in The Netherlands. Geophys. Prospect. 2010, 15, 92–115. [Google Scholar] [CrossRef]
- Liang, K.; Zhu, Y.; Shen, L. Application of high density resistivity method in groundwater exploration in Weifang. Ground Water 2013, 35, 112–113. [Google Scholar]
- Ueda, T.; Mitsuhata, Y.; Uchida, T.; Marui, A.; Ohsawa, K. A new marine magnetotelluric measurement system in a shallow-water environment for hydrogeological study. J. Appl. Geophys. 2014, 100, 23–31. [Google Scholar] [CrossRef][Green Version]
- Wang, N.; Wang, Z.; Sun, Q.; Hui, J. Coal Mine Goaf Interpretation: Survey, Passive Electromagnetic Methods and Case Study. Minerals 2023, 13, 422. [Google Scholar] [CrossRef]
- Francke, J.; Utsi, V.; Singh, K.K.K. The design of an intrinsically safe ground penetrating radar for detecting abandoned workings in underground coal mines. In Proceedings of the IEEE 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 125–130. [Google Scholar]
- Kotyrba, A.; Stańczyk, K. Sensing underground coal gasification by ground penetrating radar. Acta Geophys. 2017, 65, 1185–1196. [Google Scholar] [CrossRef][Green Version]
- Brocher, T.; Ewing, J. A comparison of high-resolution seismic methods for determining seabed velocities in shallow water. J. Acoust. Soc. Am. 1998, 79, 286–298. [Google Scholar] [CrossRef]
- Wilkinson, P.; Chambers, J.; Meldrum, P.; Ogilvy, R.; Mellor, C.; Caunt, S. A comparison of self-potential tomography with electrical resistivity tomography for the detection of abandoned mineshafts. J. Environ. Eng. Geophys. 2005, 10, 381–389. [Google Scholar] [CrossRef][Green Version]
- Li, S.; Zhou, Z.; Ye, Z.; Li, L.; Zhang, Q.; Xu, Z. Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel. J. Appl. Geophys. 2015, 116, 247–257. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, H.; Dong, Y.; Yang, X.; Wang, C.; Luo, Y. Direct estimation of the fluid properties and brittleness via elastic impedance inversion for predicting sweet spots and the fracturing area in the unconventional reservoir. J. Nat. Gas Sci. Eng. 2017, 45, 415–427. [Google Scholar] [CrossRef]
- Lelièvre, P.; Oldenburg, D. A comprehensive study of including structural orientation information in geophysical inversions. Geophys. J. Int. 2010, 178, 623–637. [Google Scholar] [CrossRef][Green Version]
- Liu, B.; Liu, Z.; Li, S.; Nie, L.; Su, M.; Sun, H. Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the xiaoheyan section of the water supply project from songhua river, Jilin, China. J. Appl. Geophys. 2017, 144, 37–49. [Google Scholar]
- Chang, S.; Qu, Z.; Zhang, S.; Fu, Y.; Chen, Q. Suppression of multiple reflection–refraction waves in the shallow low-velocity zone via vertical source combination. Acta Geophys. 2021, 69, 1799–1811. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, H.; Zhu, B.; Li, H.; Zhang, L. Seismic facies-controlled prestack simultaneous inversion of elastic and petrophysical parameters for favourable reservoir prediction. Explor. Geophys. 2018, 49, 655–668. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, J.; Li, L. Monitoring of coal-mine goaf based on 4D seismic technology. Appl. Geophys. 2020, 17, 54–66. [Google Scholar] [CrossRef]
- Vakman, D. On the analytic signal, the teager-kaiser energy algorithm, and other methods for defining amplitude and frequency. IEEE Trans. Signal Process. 2002, 44, 791–797. [Google Scholar] [CrossRef]
- Taner, M.; Koehler, F.; Sheriff, R. Complex seismic trace analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Gersztenkorn, A.; Marfurt, K.J. Eigenstructure-based coherence computations as an aid to 3-d structural and stratigraphic mapping. Geophysics 2012, 64, 1468–1479. [Google Scholar] [CrossRef]
- Fitterman, D. Transient electromagnetic sounding for groundwater. Geophysics 1986, 51, 995–1005. [Google Scholar] [CrossRef]
- Shi, R.; Darcherif, A.; Sabonnadiere, J. Computation of transient electromagnetic fields radiated by a transmission line: An exact model. IEEE Trans. Magn. 1995, 31, 2423–2431. [Google Scholar] [CrossRef]
- Chen, J.; Pi, S.; Zhang, Y.; Lin, T. Weak coupling technology with noncoplanar bucking coil in a small-loop transient electromagnetic system. IEEE Trans. Ind. Electron. 2021, 69, 3151–3160. [Google Scholar] [CrossRef]
- Qi, T.; Zhang, F.; Pei, X.; Feng, G.; Wei, H. Simulation research and application on response characteristics of detecting waterflled goaf by transient electromagnetic method. Int. J. Coal Sci. Technol. 2022, 9, 17–26. [Google Scholar] [CrossRef]
- Xue, G.; Pan, D.; Yu, J. Review the applications of geophysical methods for mapping coal-mine voids. Prog. Geophys. 2018, 33, 2187–2192. (In Chinese) [Google Scholar]
- Wang, B.; Li, W.; Ye, Q.; Ma, K. A nonparametric spectrum estimation method for dispersion and attenuation analysis of borehole acoustic measurements. Pet. Sci. 2022, 20, 241–248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Guan, W.; Chang, S.; Meng, Q.; Dong, Y.; Chen, Q. Integrated Geophysical Prediction of Goaf and Water Accumulation in Pingshuo Dong Open-Cut Mine with Ultrashallow and High Drops. Processes 2023, 11, 1653. https://doi.org/10.3390/pr11061653
Zhang S, Guan W, Chang S, Meng Q, Dong Y, Chen Q. Integrated Geophysical Prediction of Goaf and Water Accumulation in Pingshuo Dong Open-Cut Mine with Ultrashallow and High Drops. Processes. 2023; 11(6):1653. https://doi.org/10.3390/pr11061653
Chicago/Turabian StyleZhang, Sheng, Wenyuan Guan, Suoliang Chang, Qinggang Meng, Yinping Dong, and Qiang Chen. 2023. "Integrated Geophysical Prediction of Goaf and Water Accumulation in Pingshuo Dong Open-Cut Mine with Ultrashallow and High Drops" Processes 11, no. 6: 1653. https://doi.org/10.3390/pr11061653
APA StyleZhang, S., Guan, W., Chang, S., Meng, Q., Dong, Y., & Chen, Q. (2023). Integrated Geophysical Prediction of Goaf and Water Accumulation in Pingshuo Dong Open-Cut Mine with Ultrashallow and High Drops. Processes, 11(6), 1653. https://doi.org/10.3390/pr11061653