Application of Multi-Software Engineering: A Review and a Kinetic Parameter Identification Case Study
Abstract
:1. Introduction
- We systematically organized the available novel research regarding the application of multi-software engineering in the chemical industry (see Section 2).
- We presented various process simulation software, numerical solver tools, and their connection methodologies applied to a wide range of complex engineering problems to serve as a reference guide for their utilization, suitable both for academic and industrial use.
- We showed the importance of the CAPE-OPEN standard in the interoperability of different process simulator tools (see Section 4).
- Finally, in a case study, we developed a framework linking Aspen HYSYS with the MATLAB environment for kinetic identification, presenting the advantage of building a model in Aspen’s graphical interface, but also utilizing the computing capacity and custom operations that a MATLAB environment could provide (see Section 5).
2. Literature Overview
2.1. Process Modeling
2.2. Process Design and Optimization
2.3. Process Control and Safety
2.4. Data-Driven Methods
2.5. Future Challenges of Multi-Software Engineering
3. Linking Types for Multi-Software Applications
4. CAPE-OPEN Standard
5. Case Study
5.1. Simulator Development of the Case Study
5.2. Multi-Software Based Identification Framework for Kinetic Parameter Identification
- (1)
- The starting point of the sequence is running the MATLAB program, where, as a first step, it sends initial k and values to a previously set up internal HYSYS spreadsheet.
- (2)
- Values overwritten in the spreadsheet modify the described Arrhenius kinetics in the HYSYS reaction sets.
- (3)
- Then all four of the HYSYS simulations run with the new kinetic values until a set time (reaction time).
- (4)
- The simulation results; concentration trajectories of the raw material (BL), intermediate (BHP), and product (BL) are transferred to another internal HYSYS spreadsheet.
- (5)
- In the meantime, MATLAB reads and organizes the experimental data from text files.
- (6)
- MATLAB will then import the concentration trajectories from the HYSYS spreadsheets and evaluates the objective function including the estimated concentration trajectories from all four simulations and all four measured concentration values from the experiments.
- (7–8)
- Based on the normalized error values, in the next iteration step MATLAB will find new kinetic parameter values and send them to HYSYS to run the simulation again.
5.3. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- 35 Years of Innovation. Available online: https://www.aspentech.com/en/about-aspentech/35-years-of-innovation/ (accessed on 19 May 2022).
- Sargent, R. Advances in modelling and analysis of chemical process systems. Comput. Chem. Eng. 1983, 7, 219–237. [Google Scholar] [CrossRef]
- Complete List of Process Simulators. 2017. Available online: https://simulatelive.com/product-reviews/simulation/complete-list-of-process-simulators-part-1-2 (accessed on 19 May 2022).
- Pistikopoulos, E.N.; Barbosa-Povoa, A.; Lee, J.H.; Misener, R.; Mitsos, A.; Reklaitis, G.V.; Venkatasubramanian, V.; You, F.; Gani, R. Process systems engineering—The generation next? Comput. Chem. Eng. 2021, 147, 107252. [Google Scholar] [CrossRef]
- Tian, Y.; Demirel, S.E.; Hasan, M.F.; Pistikopoulos, E.N. An overview of process systems engineering approaches for process intensification: State of the art. Chem. Eng. Process.-Process Intensif. 2018, 133, 160–210. [Google Scholar] [CrossRef]
- Gani, R. Chemical product design: Challenges and opportunities. Comput. Chem. Eng. 2004, 28, 2441–2457. [Google Scholar] [CrossRef]
- Fontalvo, J.; Cuellar, P.; Timmer, J.; Vorstman, M.; Wijers, J.; Keurentjes, J. Comparing pervaporation and vapor permeation hybrid distillation processes. Ind. Eng. Chem. Res. 2005, 44, 5259–5266. [Google Scholar] [CrossRef]
- Tolksdorf, G.; Esche, E.; Wozny, G.; Repke, J.U. Customized code generation based on user specifications for simulation and optimization. Comput. Chem. Eng. 2019, 121, 670–684. [Google Scholar] [CrossRef]
- Claumann, C.A.; Peruzzo, T.; Felice, V.D.; Marangoni, C.; Machado, R. Modeling and process optimization: An approach using aspen plus and matlab in the energy integration study of distillation columns. In Proceedings of the VIII Congreso Argentino de Ingeniería Química Y, Buenos Aires, Argentina, 2–5 August 2015; Volume 3. [Google Scholar]
- Furda, P.; Variny, M.; Labovská, Z.; Cibulka, T. Process drive sizing methodology and multi-level modeling linking MATLAB® and Aspen Plus® environment. Processes 2020, 8, 1495. [Google Scholar] [CrossRef]
- Farsang, B.; Németh, S.; Abonyi, J. Online monitoring of catalyst deactivation based on data reconciliation and flowsheeting simulator. Period. Polytech. Chem. Eng. 2015, 59, 145–150. [Google Scholar] [CrossRef]
- Bayoumy, S.H.; El-Marsafy, S.M.; Ahmed, T.S. Optimization of a saturated gas plant: Meticulous simulation-based optimization—A case study. J. Adv. Res. 2020, 22, 21–33. [Google Scholar] [CrossRef]
- Zhu, W.; Ye, H.; Yang, Y.; Zou, X.; Dong, H. Simulation-Based Optimization of a Multiple Gas Feed Sweetening Process. ACS Omega 2022, 7, 2690–2705. [Google Scholar] [CrossRef]
- Shirmohammadi, R.; Soltanieh, M.; Romeo, L.M. Thermoeconomic analysis and optimization of post-combustion CO2 recovery unit utilizing absorption refrigeration system for a natural-gas-fired power plant. Environ. Prog. Sustain. Energy 2018, 37, 1075–1084. [Google Scholar] [CrossRef]
- Alabdulkarem, A.; Mortazavi, A.; Hwang, Y.; Radermacher, R.; Rogers, P. Optimization of propane pre-cooled mixed refrigerant LNG plant. Appl. Therm. Eng. 2011, 31, 1091–1098. [Google Scholar] [CrossRef]
- Brambilla, A.; Vaccari, M.; Pannocchia, G. Analytical RTO for a critical distillation process based on offline rigorous simulation. IFAC-PapersOnLine 2022, 55, 143–148. [Google Scholar] [CrossRef]
- Tuan, T.T.; Tufa, L.D.; Mutalib, M.I.A.; Abdallah, A.F.M. Control of depropanizer in dynamic Hysys simulation using MPC in Matlab-Simulink. Procedia Eng. 2016, 148, 1104–1111. [Google Scholar] [CrossRef]
- Ryu, H.; Lee, J.M. Model predictive control (mpc)-based supervisory control and design of off-gas recovery plant with periodic disturbances from parallel batch reactors. Ind. Eng. Chem. Res. 2016, 55, 3013–3025. [Google Scholar] [CrossRef]
- Dimian, A.C.; Bildea, C.S.; Kiss, A.A. Introduction in Process Simulation. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014; Volume 35, pp. 35–71. [Google Scholar]
- Aspen HYSYS Customization Guide; Aspen Technology, Inc.: Bedford, MA, USA, 2011; V7.3; Available online: www.aspentech.com (accessed on 19 May 2022).
- DWSIM—The Open Source Chemical Process Simulator. 2022. Available online: https://dwsim.org/wiki/index.php?title=Literature (accessed on 19 May 2022).
- Rangaiah, G.P.; Feng, Z.; Hoadley, A.F. Multi-objective optimization applications in chemical process engineering: Tutorial and review. Processes 2020, 8, 508. [Google Scholar] [CrossRef]
- Zhuang, J.; Tang, J.; Aljerf, L. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate. Fuel 2022, 320, 123826. [Google Scholar] [CrossRef]
- Bartolome, P.S.; Van Gerven, T. A comparative study on Aspen Hysys interconnection methodologies. Comput. Chem. Eng. 2022, 162, 107785. [Google Scholar] [CrossRef]
- Abril, A.F.; Aspen Plus-Matlab Link. MATLAB Central File Exchange. 2020. Available online: www.mathworks.com/matlabcentral/fileexchange/69464-aspen-plus-matlab-link (accessed on 19 May 2022).
- CO-LaN. Available online: www.colan.org/general-information-on-co-lan/ (accessed on 19 May 2022).
- Van Baten, J.; Pons, M. CAPE-OPEN: Interoperability in Industrial Flowsheet Simulation Software. Chem. Ing. Tech. 2014, 86, 1052–1064. [Google Scholar] [CrossRef]
- Gani, R. Computer-aided methods and tools for chemical product design. Chem. Eng. Res. Des. 2004, 82, 1494–1504. [Google Scholar] [CrossRef]
- Gani, R. Group contribution-based property estimation methods: Advances and perspectives. Curr. Opin. Chem. Eng. 2019, 23, 184–196. [Google Scholar] [CrossRef]
- Alshehri, A.S.; Tula, A.K.; You, F.; Gani, R. Next generation pure component property estimation models: With and without machine learning techniques. AIChE J. 2022, 68, e17469. [Google Scholar] [CrossRef]
- Alshehri, A.S.; Gani, R.; You, F. Deep learning and knowledge-based methods for computer-aided molecular design—Toward a unified approach: State-of-the-art and future directions. Comput. Chem. Eng. 2020, 141, 107005. [Google Scholar] [CrossRef]
- Scopus®. Available online: www.scopus.com/ (accessed on 19 May 2022).
- Di Bucchianico, D.D.M.; Wang, Y.; Buvat, J.C.; Pan, Y.; Moreno, V.C.; Leveneur, S. Production of levulinic acid and alkyl levulinates: A process insight. Green Chem. 2022, 24, 614–646. [Google Scholar] [CrossRef]
- Fontalvo, J. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link. Ing. Investig. 2014, 34, 39–43. [Google Scholar] [CrossRef]
- Kiss, A.A.; Bildea, C.S.; Grievink, J. Dynamic modeling and process optimization of an industrial sulfuric acid plant. Chem. Eng. J. 2010, 158, 241–249. [Google Scholar] [CrossRef]
- Samei, M.; Raisi, A. Multi-stage gas separation process for separation of carbon dioxide from methane: Modeling, simulation, and economic analysis. Chem. Eng. Process.-Process Intensif. 2022, 170, 108676. [Google Scholar] [CrossRef]
- Mikkonen, H.; Jegoroff, M.; Lappalainen, J.; Savolainen, J. Modelling and dynamic co-simulation studies of oxy-fired power plant. In Proceedings of the Automaatio XXI, Finnish Society of Automation, Helsinki, Finland, 17–18 March 2015. [Google Scholar]
- Sousa, A.M.; Matos, H.A.; Pereira, M.J. Modelling paraffin wax deposition using Aspen HYSYS and MATLAB. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 973–978. [Google Scholar]
- Da Rosa, C.A.; Braatz, R.D. openCrys: Open-source software for the multiscale modeling of combined antisolvent and cooling crystallization in turbulent flow. Ind. Eng. Chem. Res. 2018, 57, 11702–11711. [Google Scholar] [CrossRef]
- Egedy, A.; Kummer, A.; Leveneur, S.; Varga, T.; Chován, T. Cfd modeling of spatial inhomogeneities in a vegetable oil carbonation reactor. Processes 2020, 8, 1356. [Google Scholar] [CrossRef]
- Wutz, J.; Waterkotte, B.; Heitmann, K.; Wucherpfennig, T. Computational fluid dynamics (CFD) as a tool for industrial UF/DF tank optimization. Biochem. Eng. J. 2020, 160, 107617. [Google Scholar] [CrossRef]
- Morales-Rodríguez, R.; Gani, R.; Déchelotte, S.; Vacher, A.; Baudouin, O. Use of CAPE-OPEN standards in the interoperability between modelling tools (MoT) and process simulators (Simulis® Thermodynamics and ProSimPlus). Chem. Eng. Res. Des. 2008, 86, 823–833. [Google Scholar] [CrossRef]
- Kuntsche, S.; Barz, T.; Kraus, R.; Arellano-Garcia, H.; Wozny, G. MOSAIC a web-based modeling environment for code generation. Comput. Chem. Eng. 2011, 35, 2257–2273. [Google Scholar] [CrossRef]
- Maha, B.; Ali, S.; Ammar, B.B. Modeling and simulation of multi-effect desalination plant (SIDEM unit). In Proceedings of the 2017 International Conference on Green Energy Conversion Systems (GECS), IEEE, Hammamet, Tunisia, 23–25 March 2017; pp. 1–6. [Google Scholar]
- Ledezma-Martinez, M.; Jobson, M.; Smith, R. Simulation-Optimization-Based Design of Crude Oil Distillation Systems with Preflash Units. Ind. Eng. Chem. Res. 2018, 57, 9821–9830. [Google Scholar] [CrossRef]
- Dutta, A.; Karimi, I.A.; Farooq, S. Heating value reduction of LNG (liquefied natural gas) by recovering heavy hydrocarbons: Technoeconomic analyses using simulation-based optimization. Ind. Eng. Chem. Res. 2018, 57, 5924–5932. [Google Scholar] [CrossRef]
- Hamedi, H.; Karimi, I.A.; Gundersen, T. Optimization of helium extraction processes integrated with nitrogen removal units: A comparative study. Comput. Chem. Eng. 2019, 121, 354–366. [Google Scholar] [CrossRef]
- Christopher, C.C.E.; Dutta, A.; Farooq, S.; Karimi, I.A. Process synthesis and optimization of propylene/propane separation using vapor recompression and self-heat recuperation. Ind. Eng. Chem. Res. 2017, 56, 14557–14564. [Google Scholar] [CrossRef]
- Li, X.; Cui, C.; Li, H.; Gao, X. Process synthesis and simulation-based optimization of ethylbenzene/styrene separation using double-effect heat integration and self-heat recuperation technology: A techno-economic analysis. Sep. Purif. Technol. 2019, 228, 115760. [Google Scholar] [CrossRef]
- Ruiz-Femenia, R.; Fernández-Torres, M.J.; Salcedo-Díaz, R.; Gomez-Rico, M.F.; Caballero, J.A. Systematic tools for the conceptual design of inherently safer chemical processes. Ind. Eng. Chem. Res. 2017, 56, 7301–7313. [Google Scholar] [CrossRef]
- Oh, S.Y.; Binns, M.; Cho, H.; Kim, J.K. Energy minimization of MEA-based CO2 capture process. Appl. Energy 2016, 169, 353–362. [Google Scholar] [CrossRef]
- Rahman, R.K.; Ibrahim, S.; Raj, A. Multi-objective optimization of sulfur recovery units using a detailed reaction mechanism to reduce energy consumption and destruct feed contaminants. Comput. Chem. Eng. 2019, 128, 21–34. [Google Scholar] [CrossRef]
- Song, R.; Cui, M.; Liu, J. Single and multiple objective optimization of a natural gas liquefaction process. Energy 2017, 124, 19–28. [Google Scholar] [CrossRef]
- Zhou, L.; Liao, Z.; Wang, L.; Zhang, L.; Ji, X.; Jiao, H.; Wang, J.; Yang, Y.; Dang, Y. Simulation-Based Multiobjective Optimization of the Product Separation Process within an MTP Plant. Ind. Eng. Chem. Res. 2019, 58, 12166–12178. [Google Scholar] [CrossRef]
- Mounaam, A.; Chhiti, Y.; Souissi, A.; Salouhi, M.; Harmen, Y.; Khouakhi, M.E. Simulation and Optimization of an Industrial Sulfuric Acid Plant with Contact Process Using Python-Unisim Design. In International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Proceedings of Simulation and Modeling Methodologies, Technologies and Applications, the 10th International Conference, SIMULTECH 2020 Lieusaint, Paris, France, 8–10 July 2020; Springer: New York, NY, USA, 2020; pp. 64–89. [Google Scholar]
- Radó-Fóty, N.; Egedy, A.; Nagy, L.; Hegedus, I. Investigation and Optimisation of the Steady-State Model of a Coke Oven Gas Purification Process. Energies 2022, 15, 4548. [Google Scholar] [CrossRef]
- Vaccari, M.; Pannocchia, G.; Tognotti, L.; Paci, M.; Bonciani, R. A rigorous simulation model of geothermal power plants for emission control. Appl. Energy 2020, 263, 114563. [Google Scholar] [CrossRef]
- Vaccari, M.; Pannocchia, G.; Tognotti, L.; Paci, M. Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations. Renew. Energy 2023, 207, 471–483. [Google Scholar] [CrossRef]
- Briones-Ramírez, A.; Gutiérrez-Antonio, C. Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus. Comput. Sist. 2018, 22, 1157–1170. [Google Scholar] [CrossRef]
- Marton, S.; Svensson, E.; Subiaco, R.; Bengtsson, F.; Harvey, S. A steam utility network model for the evaluation of heat integration retrofits—A case study of an oil refinery. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 560–578. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Y.; Wang, Y. Electro-or turbo-driven?—Analysis of different blast processes of blast furnace. Processes 2016, 4, 28. [Google Scholar] [CrossRef]
- Bütün, H.; Kantor, I.; Maréchal, F. Incorporating location aspects in process integration methodology. Energies 2019, 12, 3338. [Google Scholar] [CrossRef]
- Chinprasit, J.; Panjapornpon, C. Model predictive control of vinyl chloride monomer process by Aspen Plus Dynamics and MATLAB/Simulink co-simulation approach. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 778, p. 012080. [Google Scholar]
- Dos Santos Vidal, S.F.; Schmitz, J.E.; Franco, I.C.; Fileti, A.M.F.; Da Silva, F.V. Fuzzy multivariable control strategy applied to a refrigeration system. Chem. Prod. Process. Model. 2017, 12, 20160033. [Google Scholar] [CrossRef]
- Pannocchia, G.; Brambilla, A. How to use simplified dynamics in model predictive control of superfractionators. Ind. Eng. Chem. Res. 2005, 44, 2687–2696. [Google Scholar] [CrossRef]
- Mizuta, Y.; Sumino, M.; Nakata, H.; Izato, Y.; Miyake, A. Analysis of pressure behavior during runaway reaction with case studies of various depressurization designs. Process Saf. Environ. Prot. 2022, 159, 96–105. [Google Scholar] [CrossRef]
- Kummer, A.; Varga, T. Process simulator assisted framework to support process safety analysis. J. Loss Prev. Process Ind. 2019, 58, 22–29. [Google Scholar] [CrossRef]
- Zhu, W.; Chebeir, J.; Romagnoli, J.A. Operation optimization of a cryogenic NGL recovery unit using deep learning based surrogate modeling. Comput. Chem. Eng. 2020, 137, 106815. [Google Scholar] [CrossRef]
- Muhsin, W.; Zhang, J. Multi-Objective Optimization of a Crude Oil Hydrotreating Process with a Crude Distillation Unit Based on Bootstrap Aggregated Neural Network Models. Processes 2022, 10, 1438. [Google Scholar] [CrossRef]
- Galeazzi, A.; Prifti, K.; Gallo, F.; Manenti, F. A Methodology for The Optimal Surrogate Modelling of Digital Twins Using Machine Learning. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2022; Volume 51, pp. 1543–1548. [Google Scholar]
- Alhajeri, M.S.; Luo, J.; Wu, Z.; Albalawi, F.; Christofides, P.D. Process structure-based recurrent neural network modeling for predictive control: A comparative study. Chem. Eng. Res. Des. 2022, 179, 77–89. [Google Scholar] [CrossRef]
- Kim, S.; Jang, M.G.; Kim, J.K. Process Design and Optimization of Single Mixed-Refrigerant Processes with the Application of Deep Reinforcement Learning. Appl. Thermal Eng. 2023, 223, 120038. [Google Scholar] [CrossRef]
- Hedrick, E.; Hedrick, K.; Bhattacharyya, D.; Zitney, S.E.; Omell, B. Reinforcement learning for online adaptation of model predictive controllers: Application to a selective catalytic reduction unit. Comput. Chem. Eng. 2022, 160, 107727. [Google Scholar] [CrossRef]
- Farsang, B.; Németh, S.; Abonyi, J. Role of steady state data reconciliation in process model development. Hung. J. Ind. Chem. 2013, 41, 65–75. [Google Scholar]
- Farsanga, B.; Gomorib, Z.; Horvathb, G.; Nagyb, G.; Nemetha, S.; Abonyi, J. Simultaneous validation of online analyzers and process simulators by process data reconciliation. Chem. Eng. 2013, 32, 1303–1308. [Google Scholar]
- Seman, L.O.; Giuliani, C.M.; Camponogara, E.; Müller, E.R.; Vieira, B.F.; Miyatake, L.K.; Medeiros, A.G. Tuning of oil well models with production data reconciliation. Comput. Chem. Eng. 2021, 145, 107179. [Google Scholar] [CrossRef]
- ActiveX Controls on the Internet. 2021. Available online: https://learn.microsoft.com/en-us/cpp/mfc/activex-controls-on-the-internet?view=msvc-170 (accessed on 19 May 2022).
- ActiveX Controls on the Internet. Microsoft Docs. 2021. Available online: docs.microsoft.com/en-us/cpp/mfc/activex-controls-on-the-internet?view=msvc-160) (accessed on 19 May 2022).
- OPC Foundation. 2022. Available online: opcfoundation.org/about/what-is-opc/ (accessed on 19 May 2022).
- The gPROMS Object for MATLAB. Available online: www.psenterprise.com/products/gproms/objects/gomatlab (accessed on 19 May 2022).
- Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics. MathWorks. Available online: www.mathworks.com (accessed on 19 May 2022).
- Interfacing Products with COMSOL Multiphysics® via LiveLink™. Available online: www.comsol.com/products#modules (accessed on 19 May 2022).
- Braunschweig, B.; Gani, R. Software Architectures and Tools for Computer Aided Process Engineering; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Tolksdorf, G. MOSAIC—A Modeling and Code Generation Tool. 2013. Available online: www.colan.org/wp-content/uploads/2015/09/Y13_COEU_MOSAIC.pdf (accessed on 19 May 2022).
- MOSAICmodelling. 2022. Available online: https://mosaic-modeling.de/ (accessed on 19 May 2022).
- Van Baten, J. An Introduction to Coco. 2007. Available online: www.cocosimulator.org/downloads/AIChE_SaltlakeCity_2007_ExtendedSummary.pdf (accessed on 19 May 2022).
- Ross Taylor, J.V.B. Flowsheeting with COCO and chemSep. 2010. Available online: www.cocosimulator.org/downloads/FlowsheetingWithCOCOandChemsepNotes.pdf (accessed on 19 May 2022).
- Capecci, S.; Wang, Y.; Delgado, J.; Casson Moreno, V.; Mignot, M.; Grénman, H.; Murzin, D.Y.; Leveneur, S. Bayesian Statistics to Elucidate the Kinetics of γ-Valerolactone from n-Butyl Levulinate Hydrogenation over Ru/C. Ind. Eng. Chem. Res. 2021, 60, 11725–11736. [Google Scholar] [CrossRef]
- Wang, Y.; Plazl, I.; Vernières-Hassimi, L.; Leveneur, S. From calorimetry to thermal risk assessment: γ-Valerolactone production from the hydrogenation of alkyl levulinates. Process Saf. Environ. Prot. 2020, 144, 32–41. [Google Scholar] [CrossRef]
- Wang, Y.; Cipolletta, M.; Vernières-Hassimi, L.; Casson-Moreno, V.; Leveneur, S. Application of the concept of Linear Free Energy Relationships to the hydrogenation of levulinic acid and its corresponding esters. Chem. Eng. J. 2019, 374, 822–831. [Google Scholar] [CrossRef]
Research Focus | Software | Connection | Ref. | |
---|---|---|---|---|
Custom unit operations | Membrane unit modeling | Aspen Plus, MATLAB | n.a. | [7] |
Use and comparison of rubbery and glassy membranes in a multi-stage gas separation process for separation of the CO/CH mixtures | Aspen Plus, FORTRAN | Aspen Custom Modeler (ACM) | [36] | |
Simplified membrane module, integrated mixer and splitter unit operation with two outlets; differential-algebraic equation system describing a system of two reactions and three compounds | CAPE-OPEN, SciLab, Python, MOSAICmodeling, COFE, Aspen Plus, MATLAB (fsolve, fmincon) | n.a. | [8] | |
Paraffin wax deposition in longer wells and pipelines | Aspen HYSYS, MATLAB | n.a. | [38] | |
Hybrid distillation and vapor permeation system for the partial dehydration of ethanol | Aspen Plus, MATLAB | MATLAB User Model (Mediator: Ms Excel VBA) | [34] | |
Heat Integrated Distillation Column | Aspen Plus, MATLAB | ActiveX (Mediator: Ms Excel VBA) | [9] | |
Dynamic modeling of Circulated Fluidized Bed Boiler, Air Separation Unit and CO Purification Unit | Apros, Aspen Plus Dynamics, MATLAB Simulink | OPC (Mediator: MATLAB Simulink) | [37] | |
Design of a SIDEM unit; triple effect desalination plant coupled with thermo-vapor compressor | Aspen HYSYS, MATLAB (frnincon) | n.a. | [44] | |
CFD | Spatial and temporal changes of the viscosity and the density in a Vegetable Oil Carbonation Reactor | COMSOL, MATLAB | LiveLink | [40] |
Combined antisolvent-cooling crystallization of lovastatin with methanol as solvent and water as antisolvent | openFOAM (openCrys), SolidWorks | n.a. | [39] | |
Municipal solid waste incineration process with numerical simulation methods based on mechanical grates | FLUENT, Aspen Plus, MATLAB, Phoenics, Visual Studio, Flash, IMMS, Gaebed-ss and ANSYS CFX | n.a. | [23] | |
Kinetic parameter identification | Fitting of industrial sulfuric acid plant kinetic parameters to the real plant data for modeling | gPROMS, MS Excel | n.a. | [35] |
Multiscale modeling | Reynolds-Averaged Navier-Stokes model with variable properties for macromixing with a multi-environment PDF model for micromixing; using a spatially varying population balance equation, energy balance and scalar transport equations | openFOAM (openCrys), SolidWorks | n.a. | [39] |
Steam process drive sizing methodology to replace a condensing steam turbine by a backpressure one | Aspen Plus, MATLAB | ActiveX | [10] | |
Direct Methanol Fuel Cell modelled through multiscale approach; thermodynamic property model generation, fugacity and activity coefficient calculations for methanol, water and methane | CAPE-OPEN, COFE, ICAS-MoT, ProSimPlus, Simulis Thermodynamics | DLL file | [42] | |
Scenario modeling | Dynamic modeling of a sulfuric acid production plant | gPROMS, MS Excel | n.a. | [35] |
Reduce energy consumption | Propane pre-cooled mixed refrigerant LNG plant | Aspen HYSYS, MATLAB (GA) | ActiveX | [15] |
Separation of a benzene-toluene mixture | Aspen Plus, MATLAB | ActiveX (Mediator: Ms Excel VBA) | [9] |
Research Focus | Software | Connection | Ref. | |
---|---|---|---|---|
Optimizing operating conditions | Whole green-field saturated gas plant optimization | Aspen HYSYS, MATLAB (GA, PSO) | ActiveX | [12] |
Split ratios of sour gas streams to different feed stages and circulating flow rate of the lean solvent | Aspen HYSYS, MATLAB (PSO) | ActiveX | [13] | |
Post-combustion CO recovery unit utilizing the absorption refrigeration system | Aspen HYSYS, MATLAB (GA) | ActiveX | [14] | |
Crude oil distillation systems with preflash units | Aspen HYSYS, MATLAB (GA) | ActiveX | [45] | |
Heavy hydrocarbon removal process that reduces the heating value of LNG to meet desired specifications | Aspen HYSYS, MATLAB (PSO) | ActiveX | [46] | |
LNG plant optimization on optimum composition of refrigerant mixtures and pinch temperatures | Aspen HYSYS, MATLAB (GA) | ActiveX | [15] | |
Coke oven gas purification process based on gas composition requirements; minimizing energy consumption, HS and NH content | Aspen Plus, MATLAB (fmincon) | ActiveX | [56] | |
Multi-objective optimization | Sulfur recovery units using detailed reaction mechanism | Chemkin Pro, Aspen HYSYS, MATLAB (GA) | n.a. | [52] |
Natural gas liquefaction process | Aspen HYSYS, MATLAB (GA) | ActiveX | [53] | |
Operation of the product separation process in a methanol to propylene plant | Aspen Plus, MATLAB (NSGA-II) | ActiveX | [54] | |
In a Petlyuk sequence minimizing the number of stages in a pre-fractionator, the number of stages and the heat duty in the main column | Aspen Plus, MATLAB (GA) | Local OLE automation server | [59] | |
Biobjective optimization of minimizing the Total Annual Cost and the Dow’s Fire and Explosion Index in the processes of benzene chlorination and the production of methanol | Aspen HYSYS, MATLAB, GAMS, TOMLAB | n.a. | [50] | |
Process structure optimization | Coupled stream- and process-side modeling for utility system optimization | Aspen Plus, MATLAB | ActiveX | [10] |
Four distillation-based configurations in propylene-propane separation process | Aspen HYSYS, MATLAB (PSO) | ActiveX | [48] | |
Cryogenic distillation and membrane separation in a helium extraction processes integrated with nitrogen removal units | Aspen HYSYS, MATLAB (PSO) | ActiveX | [47] | |
Double-effect distillation and self-heat recuperation technology in an ethylbenzene/styrene separation process | Aspen Plus, MATLAB (SADDE) | ActiveX | [49] | |
Comparison between a classic distillation column and a Heat Integrated Distillation Column | Aspen Plus, MATLAB | ActiveX (Mediator: Ms Excel VBA) | [9] | |
Superstructure optimization | CO capture configuration and four different types of structural modifications | UniSim desig, MATLAB (GA) | n.a. | [51] |
Multiple gas feed sweetening process | Aspen HYSYS, MATLAB (PSO) | ActiveX | [13] | |
Benzene chlorination and the production of methanol | Aspen HYSYS, MATLAB, GAMS, TOMLAB | n.a. | [50] | |
Sensitivity analysis | Number of stages of a debutanizer and deethanizer tower; amount of recycled lean oil and split ratio | Aspen HYSYS, MATLAB (GA, PSO) | ActiveX | [12] |
The effect of membrane selectivity on membrane area and reboiler duty for the partial dehydration of ethanol | Aspen Plus, MATLAB | Matlab User Model (Mediator: Ms Excel VBA) | [34] | |
Steady state simulation of a sour water stripper and dynamic simulation of a depropanizer; varying the input temperature, pressure and molar flows of three components | Aspen HYSYS, Matlab, Python, Unity | ActiveX, (Mediator: MS Excel) | [24] | |
Analysis on parameters that can be changed and that are fixed during operation in a coke oven gas purification process | Aspen Plus, MATLAB | ActiveX | [56] | |
Dynamic optimization | Real time optimization of a propane-propylene critical distillation unit | UniSim Design | n.a. | [16] |
Maximizing the amount of energy produced and the amount of SO converted into products, minimizing the total amount of SO released to the atmosphere | gPROMS, MS Excel | n.a. | [35] | |
Industrial sulfuric acid plant with contact process; minimizing emissions, maximizing production performance and revenue | Unisim Design, Python | n.a. | [55] |
Research Focus | Software | Connection | Ref. | |
---|---|---|---|---|
Control system design | Design of a condenser with two controllers to set the temperature and the liquid level inside | MOSAICmo- deling | n.a | [43] |
MPC control system design and optimization for a propane-propylene super-fractionator | UniSim design | n.a. | [16] | |
MPC control system design and tuning for a deprotonizer coloumn | Aspen HYSYS, MATLAB-Simulink | HYSYSLIB toolbox (COM) | [17] | |
Partitioned MPC control for a vinyl chloride monomer process, containing cracking, quench and distillation processes | Aspen Plus Dynamic, MATLAB-Simulink | AMSimulation block (COM) | [63] | |
MPC based plantwide control structure for the separation of off-gas from a polysilicon plant | Aspen Plus, Aspen Dynamics, MATLAB-Simulink | n.a. (COM) | [18] | |
Multivariable fuzzy logic-based control system and a classic multi loop PID applied to a refrigeration system | Aspen Plus, Aspen Dynamics, MATLAB-Simulink | n.a. (COM) | [64] | |
Implementing control algorithms | Cryogenic NGL recovery unit optimization framework to maximize profit with a stable operation of the process | Aspen HYSYS, Phyton | n.a. | [68] |
Safety-equipment modeling | Safety analysis for vent sizing regarding a runaway reaction; comparison of the method developed to the ISO omega safety valve design method | Aspen Plus Dynamic | Aspen Custom Modeler (ACM) | [66] |
Process safety | Generalized Disjunctive Programming framework, that aims to minimize the Total Annual Cost and the Dow’s Fire and Explosion Index for process safety | Aspen HYSYS, MATLAB, GAMS, TOMLAB | n.a. | [50] |
Dynamic HAZOP | Controller failures of a cumene-hydroperoxide vacuum distillation column to produce phenol | Aspen HYSYS, MATLAB | OPC | [67] |
Research Focus | Software | Connection | Ref. | |
---|---|---|---|---|
Machine learning | Process profit prediction using deep learning based surrogate models | Aspen HYSYS, Python | n.a. | [68] |
Optimization of crude oil HDT processes to develop bootstrap aggregated neural network models | Aspen HYSYS | n.a. | [69] | |
Performance of model predictive control in an ethylbenzene production process, comparing fully-connected and partially-connected recurrent neural network models | Aspen Plus Dynamic, MATLAB, Python | Message passing interface | [71] | |
Optimization of the SMR natural gas liquefaction process with Deep Q-Network | UniSim Design, MATLAB, Python | n.a. | [72] | |
Controlling nitrogen-oxide emissions in a selective catalytic reduction unit with online dynamic tuning of MPCs | Aspen Dynamics | Aspen Custom Modeler | [73] | |
Data reconciliation | Online monitoring of catalyst deactivation used for kinetic parameter estimation in C3 hydrogenation system | Aspen Plus | Microsoft Excel VBA | [11] |
Automatic detection of steady-states in oil well models for daily optimization | Marlim simulation model | n.a. | [76] | |
Emission control and detection in geothermal power plants | UniSim Design | n.a. | [58] |
Exp. | p | T | m | [BL] | [GVL] | [BHP] | [BuOH] |
---|---|---|---|---|---|---|---|
[bar] | [K] | [kg] (50 %wt moisture) | [mol/m] | [mol/m] | [mol/m] | [mol/m] | |
1 | 22.30 | 427.15 | 0.0028 | 619 | 8827 | 0 | 0 |
2 | 23.3 | 423.15 | 0 | 59 | 6884 | 1586 | 189 |
3 | 16.30 | 373.15 | 0.0005 | 1893 | 6719 | 0 | 0 |
4 | 5.20 | 393.15 | 0.0010 | 1885 | 6720 | 0 | 0 |
Pre-exponential factors | ||
J | ||
Activation energies | ||
12 304 | J | |
0 | J | |
14 490 | J |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csendes, V.F.; Egedy, A.; Leveneur, S.; Kummer, A. Application of Multi-Software Engineering: A Review and a Kinetic Parameter Identification Case Study. Processes 2023, 11, 1503. https://doi.org/10.3390/pr11051503
Csendes VF, Egedy A, Leveneur S, Kummer A. Application of Multi-Software Engineering: A Review and a Kinetic Parameter Identification Case Study. Processes. 2023; 11(5):1503. https://doi.org/10.3390/pr11051503
Chicago/Turabian StyleCsendes, Viktória Flóra, Attila Egedy, Sébastien Leveneur, and Alex Kummer. 2023. "Application of Multi-Software Engineering: A Review and a Kinetic Parameter Identification Case Study" Processes 11, no. 5: 1503. https://doi.org/10.3390/pr11051503
APA StyleCsendes, V. F., Egedy, A., Leveneur, S., & Kummer, A. (2023). Application of Multi-Software Engineering: A Review and a Kinetic Parameter Identification Case Study. Processes, 11(5), 1503. https://doi.org/10.3390/pr11051503