Coleus aromaticus Ethanolic Leaves Extract Mediates Inhibition of NF-κB Signaling Pathway in Lung Adenocarcinoma A549 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Plant Sample and Authentication
2.4. Coleus Aromaticus Extract Preparation
2.5. GC-MS Analysis
2.6. Assessment of EtOH-LCa-Mediated Cytotoxicity
2.7. Assessment of EtOH-LCa Mediated Effects on Morphology
2.8. EtOH-LCa-Mediated Effects on Nuclear Morphology
2.9. Assessment of EtOH-LCa Mediated Effects on Caspase-3 Activity
2.10. Evaluation of EtOH-LCa Mediated Effects on Intracellular ROS
2.11. Assessment of EtOH-LCa Mediated Effects on Mitochondrial Membrane Potential (ΔΨm)
2.12. Cell Cycle Assay
2.13. Assessment of EtOH-LCa Mediated Effects on NF-κB Levels
2.14. qRT-PCR-Based Assessment of Gene Expression
2.15. Statistical Analysis
3. Results
3.1. Identification of Various Phytoconstituent
3.2. EtOH-LCa Exerts Cytotoxic Effects in Lung Carcinoma Cells
3.3. EtOH-LCa Induces Significant Morphological Aberrations in Lung Carcinoma Cells
3.4. EtOH-LCa Generates High ROS -Mediated Oxidative Stress in Lung Carcinoma Cells
3.5. EtOH-LCa Induces Nuclear Condensation and Fragmentation in Lung Carcinoma Cells
3.6. Effect of EtOH-LCa on Activation of Caspase-3 in A549 Lung Cancer Cells
3.7. Effect of EtOH-LCa on Mitochondrial Membrane Potential in Lung Carcinoma Cells
3.8. Effect of EtOH-LCa on Expression Levels of Bcl-2 Members in Lung Carcinoma Cells
3.9. Effect of EtOH-LCa on Cell Cycle Progression of A549 Cells
3.10. EtOH-LCa Inhibited the NF-kB Signaling Pathway in Lung Carcinoma Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Aldawsari, M.F.; Alalaiwe, A.; Khafagy, E.S.; Al Saqr, A.; Alshahrani, S.M.; Alsulays, B.B.; Alshehri, S.; Abu Lila, A.S.; Danish Rizvi, S.M.; Hegazy, W.A.H. Efficacy of SPG-ODN 1826 Nanovehicles in Inducing M1 Phenotype through TLR-9 Activation in Murine Alveolar J774A.1 Cells: Plausible Nano-Immunotherapy for Lung Carcinoma. Int. J. Mol. Sci. 2021, 22, 6833. [Google Scholar] [CrossRef]
- Subaiea, G.M.; Rizvi, S.M.D.; Yadav, H.K.S.; Al Hagbani, T.; Abdallah, M.H.; Khafagy, E.-S.; Gangadharappa, H.V.; Hussain, T.; Abu Lila, A.S. Ganetespib with Methotrexate Acts Synergistically to Impede NF-κB/p65 Signaling in Human Lung Cancer A549 Cells. Pharmaceuticals 2023, 16, 230. [Google Scholar] [CrossRef]
- Rockswold, G.L.; Ramsey, H.E.; Buker, G.D. The results of treatment of lung cancer by surgery, radiation and chemotherapy at a USPHS hospital. Mil. Med. 1970, 135, 362–368. [Google Scholar] [CrossRef]
- Deng, L.J.; Qi, M.; Li, N.; Lei, Y.H.; Zhang, D.M.; Chen, J.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J. Leukoc. Biol. 2020, 108, 493–508. [Google Scholar] [CrossRef]
- Bernstein, N.; Akram, M.; Yaniv-Bachrach, Z.; Daniyal, M. Is it safe to consume traditional medicinal plants during pregnancy? Phytother. Res. 2020, 35, 1908–1924. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Jimmy, J.L. Coleus aromaticus Benth.: An update on its bioactive constituents and medicinal properties. All. Life 2021, 14, 756–773. [Google Scholar] [CrossRef]
- Wadikar, D.D.; Patki, P.E. Coleus aromaticus: A therapeutic herb with multiple potentials. J. Food Sci. Technol. 2016, 53, 2895–2901. [Google Scholar] [CrossRef] [Green Version]
- Hariram, N. Coleus aromaticus Benth Synthesis of Potentially Nanomedicine as High Nutritive Value of Human Health and Immunomodulator. IJSRM 2016, 4, 18–38. [Google Scholar]
- Khare, R.S.; Kundu, S. Coleus Aromaticus Benth—A Nutritive Medicinal Plant Of Potential Therapeutic Value. Int. J. Pharma Bio Sci. 2011, 2, 488–500. [Google Scholar]
- Rai, V.M.; Pai, V.R.; Kedilaya, P. A preliminary evaluation of anticancer and antioxidant potential of two traditional medicinal plants from Lamiaceae—Pogostemon heyneanus and Plectranthus amboinicus. J. Appl. Pharm. Sci. 2016, 6, 073–078. [Google Scholar] [CrossRef] [Green Version]
- Yulianto, W.; Andarwulan, N.; Giriwono, P.E.; Pamungkas, J. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7Cells. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1039, 28–34. [Google Scholar] [CrossRef]
- Baldwin, A.S., Jr. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol. 1996, 14, 649–683. [Google Scholar] [CrossRef] [Green Version]
- Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002, 3, 221–227. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Bai, L.; Lin, Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front. Biosci. (Landmark Ed.) 2011, 16, 1172–1185. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, W.; Lin, Y. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-kappaB and Akt pathways. Biochem. Biophys. Res. Commun. 2007, 355, 807–812. [Google Scholar] [CrossRef]
- Wang, X.; Ju, W.; Renouard, J.; Aden, J.; Belinsky, S.A.; Lin, Y. 17-allylamino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-kappaB pathway. Cancer Res. 2006, 66, 1089–1095. [Google Scholar] [CrossRef] [Green Version]
- Gyrd-Hansen, M.; Meier, P. IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer 2010, 10, 561–574. [Google Scholar] [CrossRef]
- Kani, K.; Momota, Y.; Harada, M.; Yamamura, Y.; Aota, K.; Yamanoi, T.; Takano, H.; Motegi, K.; Azuma, M. γ-tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products. Int. J. Oncol. 2013, 42, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, A.; Ahmad, A.; Tiwari, R.K.; Ahmad, I.; Alkhathami, A.G.; Alshahrani, M.Y.; Asiri, M.A.; Almeleebia, T.M.; Saeed, M.; Yadav, D.K.; et al. In Vitro Evaluation of Antioxidant, Anticancer, and Anti-Inflammatory Activities of Ethanolic Leaf Extract of Adenium obesum. Front. Pharmacol. 2022, 13, 847534. [Google Scholar] [CrossRef]
- Ahmad, A.; Tiwari, R.K.; Mishra, P.; Alkhathami, A.G.; Almeleebia, T.M.; Alshahrani, M.Y.; Ahmad, I.; Asiri, R.A.; Alabdullah, N.M.; Hussien, M.; et al. Antiproliferative and apoptotic potential of Glycyrrhizin against HPV16+ Caski cervical cancer cells: A plausible association with downreguation of HPV E6 and E7 oncogenes and Notch signaling pathway. Saudi J. Biol. Sci. 2022, 29, 3264–3275. [Google Scholar] [CrossRef]
- Ahmad, A.; Ansari, I.A. Carvacrol Exhibits Chemopreventive Potential against Cervical Cancer Cells via Caspase-Dependent Apoptosis and Abrogation of Cell Cycle Progression. Anti-Cancer Agents Med. Chem. 2021, 21, 2224–2235. [Google Scholar] [CrossRef]
- Ahmad, A.; Tiwari, R.K.; Saeed, M.; Al-Amrah, H.; Han, I.; Choi, E.H.; Yadav, D.K.; Ansari, I.A. Carvacrol instigates intrinsic and extrinsic apoptosis with abrogation of cell cycle progression in cervical cancer cells: Inhibition of Hedgehog/GLI signaling cascade. Front. Chem. 2023, 10, 1064191. [Google Scholar] [CrossRef]
- Khaltaev, N.; Axelrod, S. Global lung cancer mortality trends and lifestyle modifications: Preliminary analysis. Chin. Med. J. 2020, 133, 1526–1532. [Google Scholar] [CrossRef]
- Bruder, C.; Bulliard, J.L.; Germann, S.; Konzelmann, I.; Bochud, M.; Leyvraz, M.; Chiolero, A. Estimating lifetime and 10-year risk of lung cancer. Prev. Med. Rep. 2018, 11, 125–130. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Lila, A.S.; Kiwada, H.; Ishida, T. Selective delivery of oxaliplatin to tumor tissue by nanocarrier system enhances overall therapeutic efficacy of the encapsulated oxaliplatin. Biol. Pharm. Bull. 2014, 37, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, G.E.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharm. 2022, 13, 842376. [Google Scholar] [CrossRef]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Lin, Z.Q.; Liu, B.; Wei, Y.Q. Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell. Prolif. 2012, 45, 217–224. [Google Scholar] [CrossRef]
- Khafagy, E.-S.; Al Saqr, A.; Alotaibi, H.F.; Abu Lila, A.S. Cytotoxic and Apoptotic Effect of Rubus chingii Leaf Extract against Non-Small Cell Lung Carcinoma A549 Cells. Processes 2022, 10, 1537. [Google Scholar] [CrossRef]
- Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell. Sci. 2009, 122, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Al Saqr, A.; Khafagy, E.S.; Aldawsari, M.F.; Almansour, K.; Abu Lila, A.S. Screening of Apoptosis Pathway-Mediated Anti-Proliferative Activity of the Phytochemical Compound Furanodienone against Human Non-Small Lung Cancer A-549 Cells. Life 2022, 12, 114. [Google Scholar] [CrossRef]
- Khan, A.Q.; Rashid, K.; AlAmodi, A.A.; Agha, M.V.; Akhtar, S.; Hakeem, I.; Raza, S.S.; Uddin, S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed. Pharm. 2021, 143, 112142. [Google Scholar] [CrossRef]
- Marchi, S.; Giorgi, C.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; Poletti, F.; et al. Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal. Transduct. 2012, 2012, 329635. [Google Scholar] [CrossRef] [Green Version]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, B.H.; Funkhouser, W.K.; Calvo, B.F.; Meyers, M.O.; Kim, H.J.; Goldberg, R.M.; Bernard, S.A.; Caskey, L.; Deal, A.M.; Wright, F.; et al. Nuclear factor κ-light chain-enhancer of activated B cells is activated by radiotherapy and is prognostic for overall survival in patients with rectal cancer treated with preoperative fluorouracil-based chemoradiotheraphy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.P.; Zheng, C.C.; Huang, Y.N.; He, M.L.; Xu, W.W.; Li, B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021, 2, 315–340. [Google Scholar] [CrossRef]
- Rasmi, R.R.; Sakthivel, K.M.; Guruvayoorappan, C. NF-κB inhibitors in treatment and prevention of lung cancer. Biomed. Pharmacother. 2020, 130, 110569. [Google Scholar] [CrossRef]
- Cai, Z.; Tchou-Wong, K.-M.; Rom, W.N. NF-kappaB in Lung Tumorigenesis. Cancers 2011, 3, 4258–4268. [Google Scholar] [CrossRef] [Green Version]
Parameters | Range |
---|---|
Ion source temperature | 200 °C |
Column flow rate | 1.24 mL/min |
Column oven temperature | 280 °C |
Column injector temperature | 250 °C |
Pressure mode | 66.7 kPa |
Total flow rate | 10.4 mL/min |
Interface temperature | 260 °C |
Gene Name | Forward Sequence | Reverse Sequence |
---|---|---|
GAPDH | CGACCACTTTGTCAAGCTCA | CCCCTCTTCAAGGGGTCTAC |
Bcl2 | ATTGGGAAGTTTCAAATCAGC | TGCATTCTTGGACGAGGG |
Bax | TCAGGATGCGTCCACCAAGAAG | TGTGTCCACGGCGGCAATCATC |
Bad | CCTCAGGCCTATGCAAAAAG | AAACCCAAAACTTCCGATGG |
Bcl-XL | GCCACTTACCTGAATGACCACC | AACCAGCGGTTGAAGCGTTCCT |
S. No. | Retention Time | Area (%) | Compound Name | Molecular Formula |
---|---|---|---|---|
1. | 6.504 | 0.02 | 2-Methylcyclopentanol | C6H12O |
2. | 9.398 | 0.03 | 1-Decene | C10H20 |
3. | 15.650 | 0.10 | 1-Dodecanol | C12H26O |
4. | 18.707 | 0.04 | Phenol, 5-methyl-2-(1-methylethyl)-, acetate | C12H16O |
5. | 18.957 | 0.03 | 1H-3a,7-Methanoazulene | C11H10 |
6. | 21.472 | 0.20 | 1-Tetradecanol | C14H30O |
7. | 23.689 | 0.85 | 1-Dodecanol | C12H26O |
8. | 26.695 | 0.21 | 1-Hexadecanol | C16H34O |
9. | 27.615 | 0.45 | Hexadecamethylcyclooctasiloxane | C16H48O8Si8 |
10. | 29.070 | 1.33 | n-Tridecan-1-ol | C13H28O |
11. | 29.231 | 0.24 | Propanoic acid | C₃H₆O₂ |
12. | 31.142 | 2.03 | Octadecamethylcyclononasiloxane | C18H54O9Si9 |
13. | 31.387 | 0.12 | Behenic alcohol | C22H46O |
14. | 32.335 | 0.12 | 6-Octen-1-ol, 3,7-dimethyl-, propanoate | C13H24O2 |
15. | 32.816 | 0.10 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O |
16. | 33.838 | 0.79 | Cyclodecasiloxane, eicosamethyl- | C20H60O10Si10 |
17. | 34.947 | 0.33 | n-Hexadecanoic acid | C₁₆H₃₂O₂ |
18. | 35.619 | 0.20 | Irganox 1076 TMS | C38H70O3Si |
19. | 37.921 | 0.33 | Phytol | C20H40O |
20. | 38.907 | 0.17 | 2-Propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester | C18H26O3 |
21. | 39.844 | 0.38 | Phytyl stearate | C38H74O2 |
22. | 44.396 | 7.28 | Tetracosamethyl-cyclododecasiloxane | C24H72O12Si12 |
23. | 44.848 | 0.13 | Tetrapentacontane | C54H110 |
24. | 45.344 | 4.45 | Bis(2-ethylhexyl) phthalate | C24H38O4 |
25. | 45.796 | 0.63 | 4,4’-Methylenebis(2,6-DI-tert-butylphenol) | C29H44O2 |
26. | 46.887 | 0.51 | Linalyl isobutyrate | C14H24O2 |
27. | 49.486 | 0.15 | Hexacontane | C60H122 |
28. | 49.699 | 2.07 | 4-Hydroxy-7,7’,8,8’,11,11’,12,12’,15,15’-decahydro-beta, psi-carotene | C40H66O |
29. | 50.935 | 0.31 | Tetracosane | |
30. | 51.967 | 0.04 | 2,6-Dichloro-4-nitrophenol | C6H3Cl2NO3 |
31. | 53.823 | 0.08 | Oxirane, hexadecyl | C18H36O |
32. | 54.382 | 0.65 | α-Tocopherol-β-D-mannoside | C24H50 |
33. | 56.341 | 0.78 | Lathosterol | C27H46O |
34. | 56.730 | 0.06 | Profenofos | C11H15BrClO3PS |
35. | 56.841 | 1.16 | Stigmasterol | C29H48O |
36. | 57.403 | 0.04 | Quebrachamine | C19H26N2 |
37. | 57.537 | 0.12 | Octanedioic acid dimethyl ester | C10H18O4 |
38. | 58.257 | 0.07 | Testosterone decanoate | C29H46O3 |
39. | 59.219 | 0.84 | Alpha-amyrin | C30H50O |
40. | 60.220 | 0.02 | Monocrotophos | C7H14NO5P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subaiea, G.; Alafnan, A.; Alamri, A.; Hussain, T.; Hassoun, S.M.; Lila, A.S.A.; Khafagy, E.-S.; Katamesh, A.A. Coleus aromaticus Ethanolic Leaves Extract Mediates Inhibition of NF-κB Signaling Pathway in Lung Adenocarcinoma A549 Cells. Processes 2023, 11, 1332. https://doi.org/10.3390/pr11051332
Subaiea G, Alafnan A, Alamri A, Hussain T, Hassoun SM, Lila ASA, Khafagy E-S, Katamesh AA. Coleus aromaticus Ethanolic Leaves Extract Mediates Inhibition of NF-κB Signaling Pathway in Lung Adenocarcinoma A549 Cells. Processes. 2023; 11(5):1332. https://doi.org/10.3390/pr11051332
Chicago/Turabian StyleSubaiea, Gehad, Ahmed Alafnan, Abdulwahab Alamri, Talib Hussain, Shimaa Mahmoud Hassoun, Amr Selim Abu Lila, El-Sayed Khafagy, and Ahmed A. Katamesh. 2023. "Coleus aromaticus Ethanolic Leaves Extract Mediates Inhibition of NF-κB Signaling Pathway in Lung Adenocarcinoma A549 Cells" Processes 11, no. 5: 1332. https://doi.org/10.3390/pr11051332
APA StyleSubaiea, G., Alafnan, A., Alamri, A., Hussain, T., Hassoun, S. M., Lila, A. S. A., Khafagy, E.-S., & Katamesh, A. A. (2023). Coleus aromaticus Ethanolic Leaves Extract Mediates Inhibition of NF-κB Signaling Pathway in Lung Adenocarcinoma A549 Cells. Processes, 11(5), 1332. https://doi.org/10.3390/pr11051332