Modified Whale Algorithm-Based Optimization for Fractional Order Concurrent Diminution of Torque Ripple in Switch Reluctance Motor for EV Applications
Abstract
:1. Introduction
2. Analytical Modeling and Analysis of an SRM Drive System
3. Switched Reluctance Motor Control
- Torque ripple diminution,
- Tracking of reference speed,
- Reducing current error.
3.1. FO-PI Controller
3.2. FO-PI Speed Controller
3.3. MWAO FO-PI Current Controller
3.4. Commutation Angle Controller
4. Modified Whale Algorithm Optimization (MWAO)
4.1. Attacking by Bubble Net Tactic (i.e., Exploitation Phase)
4.2. Spiral Updating Position
4.3. Foraging for Locating Prey (Exploration Phase)
5. Correction Factors Selection for MWAO
6. Performance Assessment of MWAO Technique
6.1. Analysis of Exploitation Quality ()
6.2. Analysis of Exploration Quality ()
6.2.1. Analysis of Exploration Ability for Multimodal Functions ()
6.2.2. Analysis of Exploration Capability for Fixed Dimension Multimodal Functions ()
6.3. Examination of Convergence Nature
6.4. Comparison of Execution Time
7. Proposed Approach: Concurrent Diminution of Torque Ripple with Speed Regulation of SRM Using MWAO Optimized Fractional Order Controller
7.1. Multiobjective Problem Formulation
7.2. Execution of MWAO & WOA Technique
8. Results and Discussion
9. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Vector coefficients | |
B | Coefficient of friction |
Weighing factors | |
BSA | Backtracking Search Algorithm |
Vector Coefficients | |
MWAO | Modified Whale Algorithm Optimization |
d | Control Parameter of MWAO |
DSA | Differential Search Algorithm |
EV | Electric Vehicle |
FFA | Firefly Algorithm |
Flux linkage | |
FO-PI | Fractional Order Proportional Integral |
HSA | Harmonic Search Algorithm |
i | Current |
Integral Square Error of current | |
Integral Square Error of Speed | |
Reference current | |
Actual current | |
Stator current | |
Utmost iterations happened | |
Moment of Inertia | |
l | Random value selected between [−1,1] |
Random search agent picked up from present population | |
Random search agent picked up from present population | |
λ | Speed controller integrator order |
μ | Current controller integrator order |
ζ1 and ζ2 | Correction factors |
Integral Gain Constant of Speed Controller | |
Proportional Gain Constant of Speed Controller | |
WOA | Whale Optimization Algorithm |
Proportional Gain Constant of Current Controller | |
Integral Gain Constant of Current Controller | |
KW | Kilowatt |
Separation between the and best solution reached | |
LSA | Lightninig Search Algorithm |
Position Vector | |
Ongoing Best Solution | |
PI | Proportional Integral |
PSO | Particle Swarm Optimization |
Stator winding resistance | |
Random number | |
SRM | Switched Reluctance Motor |
Ongoing iteration | |
Load torque | |
λ | Order of Integrator |
Machine’s coenergy | |
ωm | Angular velocity of motor |
Transfer function of Speed Controller | |
Transfer function of Current Controller | |
θ | Rotor position in degrees |
Torque ripple coefficient | |
Electromagnetic Torque | |
T-i-θ | Torque |
Maximum value of torque | |
Minimum value of torque | |
Mean value of torque | |
Stator phase voltage | |
Actual speed | |
Reference speed |
Appendix A. Sensitivity Analysis (ζ1) and ( ζ2)
Function | ζ1 = 1.0, ζ2 = 0.5 | ζ1 = 1.0, ζ2 = 1.0 | ζ1 = 1.0, ζ2 = 1.5 | ζ1 = 1.0 ζ2 = 2.0 | ζ1 = 1.0, ζ2 = 2.5 | ζ1 = 1.0, ζ2 = 3.0 | |
---|---|---|---|---|---|---|---|
Average | 7.6556 × 10−41 | 3.423 × 10−40 | 4.0393 × 10−55 | 4.363 × 10−52 | 1.1593 × 10−59 | 5.8225 × 10−63 | |
Std. deviation | 2.782 × 10−40 | 1.5208 × 10−39 | 1.7657 × 10−54 | 2.377 × 10−51 | 4.8737 × 10−59 | 1.7546 × 10−62 | |
Average | 1.5828 × 10−23 | 8.333 × 10−22 | 1.2976 × 10−30 | 1.1353 × 10−32 | 2.5745 × 10−33 | 1.2019 × 10−30 | |
Std. deviation | 6.6982 × 10−23 | 3.9056 × 10−21 | 5.4201 × 10−30 | 3.5642 × 10−32 | 2.8745 × 10−33 | 5.44 × 10−30 | |
Average | 110363.2492 | 56408.4512 | 2.5512 × 10−49 | 1.4876 × 10−51 | 1.6209 × 10−56 | 1.6397 × 10−60 | |
Std. deviation | 33450.53221 | 17537.996 | 1.2992 × 10−48 | 8.1215 × 10−51 | 6.0977 × 10−56 | 7.7957 × 10−60 | |
Average | 54.3092 | 43.9519 | 2.4977 × 10−29 | 7.735 × 10−32 | 6.2449 × 10−32 | 1.0886 × 10−28 | |
Std. deviation | 29.0378 | 29.2169 | 8.6221 × 10−29 | 3.0035 × 10−31 | 2.8174 × 10−31 | 5.9426 × 10−28 | |
Average | 27.7379 | 27.1548 | 27.2754 | 27.2844 | 26.3645 | 26.5783 | |
Std. deviation | 0.443013 | 0.654897 | 0.303547 | 0.323847 | 0.353131 | 4.22645 | |
Average | 0.64878 | 0.14746 | 0.09098 | 0.098967 | 0.1047 (3rd) | 0.12331 | |
Std. deviation | 0.24186 | 0.11647 | 0.045069 | 0.055668 | 0.046469 | 0.055738 | |
Average | 0.003287 | 0.003679 | 0.00018764 | 0.000115 | 0.00011465 | 0.00017722 | |
Std. deviation | 0.0039455 | 0.0048482 | 0.00017255 | 0.00010374 | 0.00012841 | 0.00024685 | |
Average | −9283.7537 | −11,113.2137 | −12,519.5639 | −0.000115 | −12,502.0073 | −12,447.0115 | |
Std. deviation | 1335.5325 | 1964.45009 | 126.81916 | 0.00010374 | 163.776476 | 238.758513 | |
Average | 0 | 0 | 0 | 0 | 0 | 0 | |
Std. deviation | 0 | 0 | 0 | 0 | 0 | 0 | |
Average | 3.1382 × 10−15 | 3.0198 × 10−15 | 3.3751 × 10−15 | 1.5987 × 10−15 | 1.0066 × 10−15 | 1.0066 × 10−15 | |
Std. deviation | 2.7174 × 10−15 | 2.001 × 10−15 | 1.6559 × 10−15 | 1.4454 × 10−15 | 6.4863 × 10−15 | 6.4863 × 10−15 | |
Average | 0 | 0.0032514 | 0 | 0 | 0 | 0 | |
Std. deviation | 0 | 0.017809 | 0 | 0 | 0 | 0 | |
Average | 0.029789 | 0.0065026 | 0.0048319 | 0.0060906 | 0.006556 | 0.0070208 | |
Std. deviation | 0.016391 | 0.0051216 | 0.002176 | 0.0027322 | 0.0023295 | 0.003844 | |
Average | 0.63642 | 0.29502 | 0.11033 | 0.12464 | 0.15038 | 0.14982 | |
Std. deviation | 0.3227 | 0.2354 | 0.066306 | 0.05788 | 0.05898 | 0.086802 | |
Average | 3.3582 | 1.8857 | 2.0458 | 2.4375 | 2.17811 | 2.7936 | |
Std. deviation | 3.0923 | 1.8955 | 2.501 | 2.9447 | 2.4943 | 3.4751 | |
Average | 0.00081561 | 0.00056235 | 0.00046141 | 0.00040091 | 0.00038476 | 0.00038418 | |
Std. deviation | 0.00051826 | 0.00029764 | 0.00024184 | 0.00011491 | 7.9821 × 10−5 | 8.9299 × 10−5 | |
Average | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | |
Std. deviation | 8.7441 × 10−6 | 2.3488 × 10−8 | 1.3637 × 10−6 | 4.4862 × 10−6 | 4.8164 × 10−6 | 1.9395 × 10−6 | |
Average | 0.39955 | 0.3979 | 0.39885 | 0.39894 | 0.39826 | 0.40058 | |
Std. deviation | 0.0040552 | 3.2115 × 10−5 | 0.0018938 | 0.0018712 | 0.0009911 | 0.0043102 | |
Average | 3 | 3 | 3.0002 | 3.0003 | 3.0001 | 3.0003 | |
Std. deviation | 6.0224 × 10−5 | 6.6015 × 10−5 | 0.00040859 | 0.00058213 | 0.00032177 | 0.00066644 | |
Average | −3.8437 | −3.8593 | −3.8545 | −3.8568 | −3.8588 | −3.8576 | |
Std. deviation | 0.035037 | 0.0037188 | 0.010259 | 0.0055391 | 0.0060555 | 0.00571 | |
Average | −3.1236 | −3.2228 | −3.2427 | −3.2412 | −3.266 | −3.2382 | |
Std. deviation | 0.24137 | 0.094241 | 0.094653 | 0.08854 | 0.082639 | 0.091723 | |
Average | −10.0684 | −9.3038 | −8.9106 | −9.1935 | −10.1108 | −9.2981 | |
Std. deviation | 0.0859104 | 2.2249 | 2.1651 | 1.8867 | 1.8733 | 1.7044 | |
Average | −10.3287 | −8.5547 | −9.3393 | −8.8644 | −9.4978 | −8.719 | |
Std. deviation | 0.0854108 | 2.6061 | 1.5836 | 2.3254 | 1.7935 | 2.2637 | |
Average | −10.1785 | −9.282 | −9.1738 | −9.5958 | −10.4457 | −9.7806 | |
Std. deviation | 1.46931 | 2.5818 | 2.2747 | 1.8494 | 2.1227 | 1.504 |
Function | ζ1 = 1.0, ζ2 = 2.5 | ζ1 = 1.5, ζ2 = 2.5 | ζ1 = 2.0, ζ2 = 2.5 | ζ1 = 2.5 ζ2 = 2.5 | ζ1 = 3.0, ζ2 = 2.5 | ζ1 = 3.5, ζ2 = 2.5 | |
---|---|---|---|---|---|---|---|
Av. | 1.1593 × 10−59 | 8.4873 × 10−224 | 9.8813 × 10−324 | 0 | 0 | 0 | |
Std. | 4.8737 × 10−59 | 0 | 0 | 0 | 0 | 0 | |
Av. | 2.5745 × 10−33 | 1.7253 × 10−113 | 1.1593 × 10−162 | 1.4723 × 10−192 | 2.3936× 10−222 | 9.9903 × 10−243 | |
Std. | 2.8745 × 10−33 | 9.4167 × 10−113 | 4.4455 × 10−162 | 0 | 0 | 0 | |
Av. | 1.6209 × 10−56 | 2.3263 × 10−217 | 7.6088 × 10−311 | 0 | 0 | 0 | |
Std. | 6.0977 × 10−56 | 0 | 0 | 0 | 0 | 0 | |
Av. | 6.2449 × 10−32 | 7.185 × 10−114 | 5.3626 × 10−163 | 2.0152 × 10−189 | 1.8936 × 10−219 | 1.503 × 10−242 | |
Std. | 2.8174 × 10−31 | 3.4089 × 10−113 | 2.2228 × 10−162 | 0 | 0 | 0 | |
Av. | 26.3645 | 27.4518 | 27.7293 | 27.9926 | 28.0469 | 28.0833 | |
Std. | 0.353131 | 0.400047 | 0.412319 | 0.363797 | 0.3473 | 0.343142 | |
Av. | 0.1047 | 0.22679 | 0.51077 | 0.53919 | 0.58355 | 0.61437 | |
Std. | 0.046469 | 0.069648 | 0.17753 | 0.15796 | 0.24981 | 0.32066 | |
Av. | 0.00011465 | 8.9378 × 10−5 | 0.00010015 | 8.5411 × 10−5 | 7.8268 × 10−5 | 0.00010142 | |
Std. | 0.00012841 | 7.4012 × 10−5 | 9.3399 × 10−5 | 8.0125 × 10−5 | 6.886 × 10−5 | 9.2815 × 10−5 | |
Av. | −12,502.0073 | −11,439.6176 | −11,380.9642 | −11,356.6927 | −11,516.3283 | −11,129.1044 | |
Std. | 163.776476 | 1245.59677 | 1755.65974 | 1443.79102 | 1815.34216 | 1764.70062 | |
Av. | 0 | 0 | 0 | 0 | 0 | 0 | |
Std. | 0 | 0 | 0 | 0 | 0 | 0 | |
Av. | 1.0066 × 10−15 | 1.0066 × 10−15 | 8.8818 × 10−16 | 8.8818 × 10−16 | 8.8818 × 10−16 | 8.8818 × 10−16 | |
Std. | 6.4863 × 10−16 | 6.4863 × 10−16 | 0 | 0 | 0 | 0 | |
Av. | 0 | 0 | 0 | 0 | 0 | 0 | |
Std. | 0 | 0 | 0 | 0 | 0 | 0 | |
Av. | 0.006556 | 0.012229 | 0.024117 | 0.027424 | 0.027679 | 0.042597 | |
Std. | 0.0023295 | 0.0061196 | 0.0097346 | 0.01098 | 0.013716 | 0.031859 | |
Av. | 0.15038 | 0.25599 | 0.37991 | 0.47182 | 0.51315 | 0.51355 | |
Std. | 0.058981 | 0.090468 | 0.14704 | 0.20594 | 0.20568 | 0.23737 | |
Av. | 2.17811 | 5.5874 | 5.8163 | 8.2108 | 9.1477 | 7.7524 | |
Std. | 2.4943 | 4.9629 | 4.911 | 5.0777 | 4.8873 | 5.3965 | |
Av. | 0.00038476 | 0.00038663 | 0.00039224 | 0.00042184 | 0.00046921 | 0.00043481 | |
Std. | 7.9821 × 10−5 | 8.5211 × 10−5 | 0.00011758 | 0.00012183 | 0.00013442 | 0.0001309 | |
Av. | −1.0316 | −1.0117 | −1.0055 | −1.0048 | −1.0041 | −1.0057 | |
Std. | 4.8164 × 10−6 | 0.012736 | 0.0094093 | 0.0079115 | 0.0083002 | 0.010042 | |
Av. | 0.39826 | 0.39887 | 0.39864 | 0.40292 | 0.39938 | 0.40198 | |
Std. | 0.0009911 | 0.00016374 | 0.0011056 | 0.024402 | 0.0042679 | 0.019078 | |
Av. | 3.0001 | 3.0014 | 3.0036 | 3.9119 | 3.9112 | 8.42953 | |
Std. | 0.00032177 | 0.0021175 | 0.005737 | 4.93 | 4.9296 | 10.9732 | |
Av. | −3.8588 | −3.8532 | −3.8355 | −3.8313 | −3.8385 | −3.8155 | |
Std. | 0.0060555 | 0.014227 | 0.031627 | 0.039658 | 0.033109 | 0.054432 | |
Av. | −3.266 | −3.2332 | −3.1838 | −3.1241 | −3.1664 | −3.0841 | |
Std. | 0.082639 | 0.10405 | 0.1321 | 0.19023 | 0.13984 | 0.22011 | |
Av. | −10.1108 | −6.6502 | −6.1211 | −6.3317 | −6.5192 | −6.7025 | |
Std. | 1.8733 | 2.3266 | 1.8503 | 1.9532 | 2.0645 | 2.0424 | |
Av. | −9.4978 | −7.3499 | −6.3975 | −6.8133 | −6.8929 | −6.6846 | |
Std. | 1.7935 | 2.4942 | 2.1603 | 2.4119 | 2.0272 | 2.1886 | |
Av. | −10.4457 | −6.4657 | −7.1001 | −6.5468 | −7.1618 | −7.0914 | |
Std. | 2.1227 | 2.2941 | 2.3042 | 2.2093 | 2.335 | 2.2302 |
Functions | |||||||
---|---|---|---|---|---|---|---|
WOA | 5.359231 | 6.21212 | 31.8832 | 5.48073 | 6.664643 | 5.393869 | 9.180304 |
MWAO | 5.464056 | 6.2987 | 31.6330 | 5.517608 | 6.820316 | 5.396708 | 9.314385 |
Functions | |||||||
WOA | 7.165297 | 5.652841 | 6.528609 | 7.405994 | 18.840883 | 18.814588 | |
MWAO | 7.178957 | 5.711984 | 6.665277 | 7.448466 | 18.857660 | 19.073341 | |
Functions | |||||||
WOA | 46.340362 | 4.496783 | 3.87674 | 2.967898 | 2.960074 | ||
MWAO | 47.109380 | 4.514427 | 3.336196 | 2.910601 | 3.017865 | ||
Functions | |||||||
WOA | 6.961318 | 7.226696 | 11.19802 | 14.01065 | 18.852677 | ||
MWAO | 7.038459 | 7.217759 | 11.136932 | 14.11498 | 19.03258 |
Algorithm | Parameter | Value |
---|---|---|
PSO | c1 | 2 |
c2 | 2 | |
FFA | γ | 1 |
β | 1 | |
α | 0.2 | |
BSA | F | 3.rand |
DSA | p1and p2 | 0.3.rand |
LSA | Channel time | 10 |
WOA | Parameter d of coefficient vector | Decreases linearly from 2 to 0. |
Parameter ɑ of coefficient vector | Decreases from 2 to 0. | |
MWAO | Parameter of coefficient vector | Varies between 2 to 0. |
Parameter ɑ of coefficient vector | Varies between 2 to 0. | |
Correction factor, CF1 | 2.5 | |
Correction factor, CF2 | 1.5 |
Appendix B. Dimension of SRM Adopted for Design
Machine Parameter | Value | Machine Parameter | Value |
---|---|---|---|
Power (output) | 75 KW | Load torque | 4 nm |
Rotor speed | 1000 RPM | Aligned inductance | 23.62 mH |
Resistance of stator | 0.05 ohm | Unaligned inductance | 0.67 mH |
Friction | 0.02 Nms | DC link voltage (Input) | 220 V |
Inertia | 0.025 Kg mm | Maximum current | 450 A |
Number of stator pole | 8 | Maximum flux linkage | 0.486 mH |
Number of rotor pole | 6 | Saturated inductance | 0.15 mH |
Flow Chart for Computation
References
- Harris, M.R. Comparison of Design and Performance Parameters in Switched Reluctance and Induction Motors. In Proceedings of the 1989 Fourth International Conference on Electrical Machines and Drives, Oxford, UK, 13–15 September 1989; pp. 303–307. [Google Scholar]
- Hu, Y.; Song, X.; Cao, W.; Ji, B. New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs). IEEE Trans. Ind. Electron. 2014, 61, 5722–5731. [Google Scholar] [CrossRef]
- Valdivia, V.; Todd, R.; Bryan, F.J.; Barrado, A.; Lázaro, A.; Forsyth, A.J. Behavioral modeling of a switched reluctance generator for aircraft power systems. IEEE Trans. Ind. Electron. 2014, 61, 2690–2699. [Google Scholar] [CrossRef]
- Miler, T.J.E. Switched Reluctance Motor and Their Control; Magna Physics Publishing: Lebanon, OH, USA, 1993. [Google Scholar]
- Anwar, M.N.; Hussain, I.; Radun, A.V. Comprehensive design methodology for switched reluctance machines. IEEE Trans. Ind. Appl. 2001, 37, 1684–1692. [Google Scholar] [CrossRef]
- Hussain, I. Minimization of torque ripple in SRM drives. IEEE Trans. Ind. Electron. 2002, 49, 28–39. [Google Scholar] [CrossRef]
- Torrey, D.A.; Niu, X.M.; Unkauf, E.J. Analytical modeling of variable reluctance machine magnetization characteristics. IEEE Proc. Elctr. Power Appl. 1995, 142, 14–22. [Google Scholar] [CrossRef]
- Hoang, L.H.; Brunelle, P. A Versatile Nonlinear Switched Reluctance Motor in Simulink Using Realistic and Analytical Magnetic Characteristics. In Proceedings of the 31st Annual Conference of the IEEE Industrial Electronics Society, Raleigh, NC, USA, 6–10 November 2005. [Google Scholar]
- Li, D.; Yu, H.; Tee, K.P.; Wu, Y.; Ge, S.S.; Lee, T.H. On time-synchronized stability and control. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 2450–2463. [Google Scholar] [CrossRef]
- Brandsletter, P.; Hrbac, R. Application of Fuzzy Logic in Control of Switched Reluctance Motor. Adv. Electr. Electron. Eng. 2006, 5, 68–71. [Google Scholar]
- Lin, Z.; Reay, S.; Williams, W. Torque ripple reduction in switched reluctance motor drives using B-Spline neural networks. IEEE Trans. Ind. Appl. 2006, 2, 1445–1453. [Google Scholar] [CrossRef]
- Nesmachnow, S. An overview of metaheuristics: Accurate and efficient methods for optimisation. Int. J. Metaheuristics 2014, 3, 320–347. [Google Scholar] [CrossRef]
- Boussa, D.I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117. [Google Scholar] [CrossRef]
- Sayedali; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Civicioglu, P. Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci. 2012, 46, 229–247. [Google Scholar] [CrossRef]
- Shareef, H.; Ibrahim, A.A.; Mutlag, A.H. Lightninig Search Algorithm. Appl. Soft Comput. 2015, 36, 315–333. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–70. [Google Scholar] [CrossRef]
- Civicioglu, P. Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 2013, 219, 8121–8814. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Yang, X.S. Firefly Algorithm in Engineering Optimization; John Wiley & Sons Inc.: New York, NY, USA, 2010. [Google Scholar]
- Saha, N.; Panda, S. Speed control with torque ripple reduction of switched reluctance motor by Hybrid Many Optimizing Liaison Gravitational Search technique. Eng. Sci. Technol. Int. J. 2017, 20, 909–921. [Google Scholar] [CrossRef]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 2003, 35, 263–308. [Google Scholar] [CrossRef]
- Wang, G.; Tan, Y. Improving Metaheuristics Algorithms with Information Feedback Model. IEEE Trans. Cybernatics 2017, 49, 542–555. [Google Scholar] [CrossRef]
- Mahrach, M.; Miranda, G.; León, C.; Segredo, E. Comparison between Single and Multi-Objective Evolutionary Algorithms to Solve the Knapsack Problem and the Travelling Salesman Problem. Mathematics 2020, 8, 2018. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimization algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Civicioglu, P.; Besdok, E. Bernstain-search differential evolution algorithm for numerical function optimization. Expert Syst. Appl. 2019, 138, 112831. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional-Order Systems and Fractional-Order Controllers; Institute of Experimental Physics, Slovak Academy of Sciences: Kosice, Slovakia, 1994; Volume 12, pp. 1–18. [Google Scholar]
- Tytiuk, V.; Ilchenko, O.; Chornyi, O.; Zachepa, I.; Serhiienko, S.; Berdai, A. SRM Identification with Fractional Order Transfer Functions. In Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; pp. 271–274. [Google Scholar] [CrossRef]
- Ghoudelbourk, S.; Azar, A.T.; Dib, D.; Rechach, A. Fractional order control of switched reluctance motor. Int. J. Adv. Intell. Paradig. 2022, 21, 247–266. [Google Scholar] [CrossRef]
- Digalakis, J.; Margaritis, K. On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 2001, 77, 481–506. [Google Scholar] [CrossRef]
- Molga, M.; Smutnicki, C. Test functions for optimization needs. Robert Marks.org 2005, 101, 48. [Google Scholar]
- Evangeline, S.J.; Venmathi, K.; Ajayan, S. Speed Control of Switched Reluctance Motor Using Fractional Order Control. In Proceedings of the International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), Coimbatore, India, 3–4 February 2017; pp. 367–372. [Google Scholar]
- Hamouda, M.; Menaem, A.A.; Rezk, H.; Ibrahim, M.N.; Számel, L. Numerical Estimation of Switched Reluctance Motor Excitation Parameters Based on a Simplified Structure Average Torque Control Strategy for Electric Vehicles. Mathematics 2020, 8, 1213. [Google Scholar] [CrossRef]
- Boukhnifer, M.; Chaibet, A.; Ouddah, N.; Monmasson, E. Speed robust design of switched reluctance motor for electric vehicle system. Adv. Mech. Eng. 2017, 9. [Google Scholar] [CrossRef]
- Rechach, A.; Ghoudelbourk, S.; Aoulmi, Z.; Djalel, D. Smart Controls for Switched Reluctance Motor 8/6 Used for Electric Vehicles Underground Mining Security. Eur. J. Electr. Eng. 2021, 23, 423–432. [Google Scholar] [CrossRef]
Functions | Dimension | Range | |
---|---|---|---|
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 |
Function | MWAO | WOA | LSA | DSA | ||||
---|---|---|---|---|---|---|---|---|
Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | |
1.1593 × 10−59 | 4.877 × 10−59 | 3.0063 × 10−72 | 1.6466 × 10−71 | 4.81067 × 10−8 | 3.4013 × 10−7 | 11.58475 | 6.93844 | |
2.5745 × 10−33 | 2.8745 × 10−33 | 1.1189 × 10−51 | 2.8691 × 10−51 | 0.0368065 | 0.1562330 | 1.00603663 | 0.35791079 | |
1.6209 × 10−56 | 6.0977 × 10−56 | 42289.253 | 14705.725 | 43.240804 | 29.921944 | 20,888.9331 | 6907.30897 | |
6.2449 × 10−32 | 2.8174 × 10−31 | 49.2251 | 29.2213 | 1.4932757 | 1.3028270 | 27.8103282 | 7.07708310 | |
26.3645 | 0.353131 | 28.1028 | 0.489595 | 64.281603 | 43.755761 | 1108.18071 | 572.420941 | |
0.1047 | 0.046469 | 0.44119 | 0.28478 | 3.3400000 | 2.0860078 | 15.74000000 | 11.29531240 | |
0.0001146 | 0.0001284 | 0.0037228 | 0.0048686 | 0.0240797 | 0.0057262 | 0.123075150 | 0.065346271 | |
Function | BSA | FFA | PSO | HSA | ||||
Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | |
9.9673617 | 9.8122468 | 0.0116106 | 0.0042959 | 2.76284 × 10−5 | 4.3213 × 10−5 | 24.7111807 | 6.671103 | |
1.1971508 | 0.5285104 | 0.3733268 | 0.1014310 | 0.0049233 | 0.0033347 | 1.457490046 | 0.268102707 | |
2720.3105 | 1182.1965 | 1808.8064 | 659.65397 | 27.863965 | 9.5794981 | 6878.658480 | 1943.088569 | |
9.8347514 | 2.2732874 | 0.0766947 | 0.0146061 | 0.6102370 | 0.1460184 | 9.385431891 | 1.226512199 | |
471.54854 | 231.14198 | 128.28961 | 278.63448 | 68.722926 | 57.810769 | 830.0325560 | 474.1996651 | |
13.940000 | 17.300949 | 0.0000000 | 0.0000000 | 0.1000000 | 0.3030458 | 25.1000000 | 7.532920944 | |
0.0544985 | 0.0161183 | 0.0352289 | 0.0239832 | 138.83431 | 22.077449 | 0.463241118 | 0.112722402 |
Function | Dimension | Range | |
---|---|---|---|
30 | |||
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 |
Function | MWAO | WOA | LSA | DSA | ||||
---|---|---|---|---|---|---|---|---|
Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | |
−12,502.007 | 163.77647 | −10,175.947 | 1956.1498 | −8058.7179 | 669.15931 | −10,005.1120 | 278.960960 | |
0 | 0 | 1.8948 × 10−15 | 1.0378 × 10−14 | 59.697425 | 14.915302 | 46.6551322 | 7.19733732 | |
1.0066 × 10−15 | 6.4863 × 10−16 | 0.023891 | 0.01689 | 2.5372704 | 0.9108028 | 3.646161760 | 1.984370448 | |
0 | 0 | 0.56157 | 0.2582 | 0.0073960 | 0.0067533 | 1.091219304 | 0.093916433 | |
0.006556 | 0.0023295 | 1.8197 | 1.8725 | 0.1036690 | 0.7439600 | 0.170607599 | 0.33670129 | |
0.15038 | 0.058981 | 0.0006597 | 0.0003747 | 0.0109874 | 0.0472792 | 1.015913093 | 0.784576410 | |
Function | BSA | FFA | PSO | HSA | ||||
Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | |
−9611.699 | 253.00510 | −5867.317 | 655.51928 | −3979.339 | 869.14843 | −7388.96021 | 350.4224603 | |
66.364367 | 8.0299007 | 24.615080 | 9.1492405 | 42.619764 | 10.628658 | 85.55923249 | 10.78576220 | |
2.9164642 | 1.4912506 | 0.0507003 | 0.0137381 | 0.0028502 | 0.0110875 | 8.796876785 | 0.612494464 | |
1.0668755 | 0.0868654 | 0.0056496 | 0.0014346 | 0.0098795 | 0.0242059 | 1.243666737 | 0.064079805 | |
0.0759286 | 0.1533844 | 0.0002308 | 0.0001001 | 1.9034 × 10−7 | 0.0541695 | 0.159434981 | 0.097411015 | |
0.5269402 | 0.7494317 | 0.0019041 | 0.0010403 | 1.1485 × 10−5 | 0.0054067 | 1.700684317 | 0.549887450 |
Function | Range | |
---|---|---|
1 | ||
0.00030 | ||
−1.0316 | ||
0.398 | ||
3 | ||
−3.86 | ||
−3.32 | ||
−10.1532 | ||
−10.4028 | ||
−10.5363 |
Function | MWAO | WOA | LSA | DSA | ||||
---|---|---|---|---|---|---|---|---|
Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | |
2.17811 | 2.4943 | 4.678 × 10−15 | 2.628 × 10−15 | 0.9980038 | 0.3379795 | 0.99800384 | 3.36448 × 10−16 | |
0.0003848 | 7.982 × 10−5 | 0.0006597 | 0.0003747 | 0.0241485 | 0.0472792 | 1.17000617 | 0.784576410 | |
−1.0316 | 4.8164 × 10−6 | 0.39789 | 9.23 × 10−7 | −1.031628 | 0.0000000 | −1.0316285 | 0.000000000 | |
0.39826 | 0.0009911 | 0.0054253 | 0.029715 | 0.3978874 | 1.682 × 10−16 | 0.39788736 | 7.79967 × 10−12 | |
3.0001 | 0.0003218 | 3.0000 | 0.0001023 | 3.000000 | 3.345 × 10−15 | 3.00000000 | 5.38203 × 10−8 | |
−3.8588 | 0.0060555 | −3.8599 | 0.0060714 | −3.862782 | 0.0000000 | −3.8627821 | 0.000000000 | |
−3.2749 | 0.082639 | −3.1969 | 0.11385 | −3.272060 | 0.0592765 | −3.3219952 | 2.32293 × 10−8 | |
−9.6997 | 1.8733 | −8.4587 | 1.8387 | −7.02732 | 3.1561521 | −10.152834 | 0.001254219 | |
−9.4978 | 1.7935 | −7.3764 | 3.4035 | −7.136702 | 3.5149774 | −10.393586 | 0.044169900 | |
−10.0826 | 2.1227 | −8.4166 | 3.4307 | −10.53641 | 3.5960426 | −10.536396 | 0.012504559 | |
Function | BSA | FFA | PSO | HSA | ||||
Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | Av. | St.Dev | |
0.9980038 | 3.3645 × 10−16 | 1.9920878 | 0.6688734 | 1.7903980 | 1.2598958 | 1.605937 | 1.371648196 | |
0.7564660 | 0.7494317 | 0.0022405 | 0.0010403 | 0.0044428 | 0.0054067 | 1.83258210 | 0.5498874505 | |
−1.031628 | 0.0000000 | −1.031624 | 2.827 × 10−9 | −1.035284 | 0.0000000 | −0.9965145 | 0.0681095561 | |
0.3978874 | 1.4332 × 10−12 | 0.3978874 | 3.131 × 10−9 | 0.3978873 | 1.684 × 10−16 | 0.407772879 | 0.021637622 | |
3.0000000 | 3.50940 × 10−15 | 3.0000001 | 2.561 × 10−8 | 3.000000 | 4.113 × 10−15 | 3.000052375 | 0.0000538472 | |
−3.8627821 | 0.000000 | −3.862782 | 9.161 × 10−10 | −3.508608 | 0.3077822 | −3.86021051 | 0.0032566497 | |
−3.3219945 | 2.6286 × 10−60 | −3.267674 | 0.0619827 | −1.852705 | 0.6552864 | −3.12163665 | 0.133471100 | |
−10.153199 | 0.00058358 | −8.427091 | 3.1202941 | −8.653837 | 2.8082488 | −2.78267147 | 1.8136031039 | |
−10.402947 | 0.00010680 | −10.27848 | 0.8800407 | −10.08649 | 1.2652499 | −3.04577891 | 1.645499759 | |
−10.536409 | 6.41563 × 10−50 | −10.53640 | 1.115 × 10−6 | −10.32051 | 1.0609041 | −4.20434150 | 3.0085418461 |
Gains | Lower Limit | Upper Limit |
---|---|---|
0 | 200 | |
0 | 200 | |
Speed controller integrator order, λ | 0.1 | 1 |
0 | 2000 | |
0 | 100 | |
Current controller integrator order, μ | 0.1 | 1 |
32 | 36 | |
54 | 58 |
Gains | Lower Limit | Upper Limit |
---|---|---|
0 | 200 | |
0 | 200 | |
0 | 2000 | |
0 | 100 | |
32 | 36 | |
54 | 58 |
Method | Parameters | Best Value | Worst Value | Mean Value | Std Deviation |
---|---|---|---|---|---|
MWAO (FO-PI controller) | 29.2972 | 29.5669 | 29.4097 | 0.1403 | |
1.3353 × 104 | 1.3507 × 104 | 1.3426 × 104 | 77.3649 | ||
34.3528 | 59.9811 | 47.6706 | 11.4450 | ||
Y | 2.5981 × 106 | 2.71802 × 106 | 2.7080 × 106 | 9.9606 × 103 | |
MWAO (PI controller) | 29.5523 | 29.5746 | 29.5667 | 0.0099 | |
1.4348 × 104 | 1.4562 × 104 | 1.4468 × 104 | 89.0206 | ||
37.1105 | 34.9143 | 34.5690 | 0.4137 | ||
Y | 2.626535 × 106 | 2.734226 × 106 | 2.7290 × 106 | 3.5509 × 103 | |
WOA | 31.9311 | 33.0552 | 32.15857 | 0.0628 | |
1.4997 × 104 | 1.8238 × 104 | 1.6513 × 104 | 1.8712 × 103 | ||
212.7761 | 310.1984 | 254.9331 | 50.0165 | ||
Y | 2.8882 × 106 | 2.9379 × 106 | 2.9036 × 106 | 3.1041 × 104 |
Technique/Parameter | λ | μ | ||||||
---|---|---|---|---|---|---|---|---|
MWAO (FO-PI Controller) | 1.0001 | 1.00012 | 0.5833 | 48.0830 | 435.4619 | 0.5051 | 36 | 54 |
MWAO (PI Controller) | 1.001 | 1.0024 | NA | 100 | 541.041 | NA | 36 | 54 |
WOA (PI Controller) | 3.0355 | 1.0036 | NA | 9.5044 | 77.8519 | NA | 36 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, N.; Mishra, P.C. Modified Whale Algorithm-Based Optimization for Fractional Order Concurrent Diminution of Torque Ripple in Switch Reluctance Motor for EV Applications. Processes 2023, 11, 1226. https://doi.org/10.3390/pr11041226
Saha N, Mishra PC. Modified Whale Algorithm-Based Optimization for Fractional Order Concurrent Diminution of Torque Ripple in Switch Reluctance Motor for EV Applications. Processes. 2023; 11(4):1226. https://doi.org/10.3390/pr11041226
Chicago/Turabian StyleSaha, Nutan, and Prakash Chandra Mishra. 2023. "Modified Whale Algorithm-Based Optimization for Fractional Order Concurrent Diminution of Torque Ripple in Switch Reluctance Motor for EV Applications" Processes 11, no. 4: 1226. https://doi.org/10.3390/pr11041226
APA StyleSaha, N., & Mishra, P. C. (2023). Modified Whale Algorithm-Based Optimization for Fractional Order Concurrent Diminution of Torque Ripple in Switch Reluctance Motor for EV Applications. Processes, 11(4), 1226. https://doi.org/10.3390/pr11041226