Preparation of Thermally Conductive Silicone Rubber-Based Ultra-Thin Sheets with Low Thermal Resistance and High Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TCSR-Based Thin Sheets by the Conventional Method
2.3. Preparation of TCSR-Based Ultra-Thin Sheets by the Low Viscosity Method
2.4. Characterization
3. Results and Discussions
3.1. Morphology
3.2. Mechanical and Electrical Insulation Properties
3.3. Thermal Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z.Y. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Ma, H.Q.; Gao, B.; Wang, M.Y.; Yuan, Z.Y.; Shen, J.B.; Zhao, J.Q.; Feng, Y. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review. J. Mater. Sci. 2021, 56, 1064–1086. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, N.; Lin, X.; Nie, S. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr. Polym. 2020, 234, 115888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Han, D.; Zhao, Y.H.; Bai, S.L. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 2016, 109, 552–557. [Google Scholar] [CrossRef]
- Teng, W.Y.; Tseng, H.M.; Hung, L.Y.; Wang, Y.P. High performance film-type thermal interface material containing vertically aligned carbon nanofibers. In Proceedings of the 20th International Conference on Electronics Packaging (ICEP), Electr Network, Tokyo, Japan, 12–14 May 2021; pp. 141–142. [Google Scholar]
- Huang, J.Z.; E, S.; Li, J.Y.; Jia, F.F.; Ma, Q.; Hua, L.; Lu, Z. Ball-milling exfoliation of hexagonal boron nitride in viscous hydroxyethyl cellulose for producing nanosheet films as thermal interface materials. ACS Appl. Nano Mater. 2021, 4, 13167–13175. [Google Scholar] [CrossRef]
- Song, Q.; Zhu, W.; Deng, Y.; Hai, F.; Wang, Y.; Guo, Z.P. Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material. Compos. Part A-Appl. Sci. Manuf. 2019, 127, 105654. [Google Scholar] [CrossRef]
- Lv, L.; Dai, W.H.; Yu, J.; Jiang, N.; Lin, C.T. A mini review: Application of graphene paper in thermal interface materials. New Carbon Mater. 2021, 36, 930–938. [Google Scholar] [CrossRef]
- Liu, H.B.; Su, X.Q.; Fu, R.L.; Wu, B.Y.; Chen, X.D. The flexible film of SCF/BN/PDMS composites with high thermal conductivity and electrical insulation. Compos. Commun. 2021, 23, 100573. [Google Scholar] [CrossRef]
- Liu, H.; Fu, R.; Su, X.; Wu, B.; Wang, H.; Xu, Y.; Liu, X. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23, 100953. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ma, J.; Wei, N.; Yang, J.; Pei, Q.X. Recent progress in the development of thermal interface materials: A review. Phys. Chem. Chem. Phys. 2021, 23, 753–776. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Ma, H.Q.; Hussien, M.A.; Feng, Y.K. Development and challenges of thermal interface materials: A review. Macromol. Mater. Eng. 2021, 306, 2100428. [Google Scholar] [CrossRef]
- Bahru, R.; Zamri, M.F.M.A.; Shamsuddin, A.H.; Shaari, N.; Mohamed, M.A. A review of thermal interface material fabrication method toward enhancing heat dissipation. Int. J. Energy Res. 2021, 45, 3548–3568. [Google Scholar] [CrossRef]
- Hansson, J.; Zanden, C.; Ye, L.; Liu, J. Review of current progress of thermal interface materials for electronics thermal management applications. In Proceedings of the 16th IEEE International Conference on Nanotechnology (IEEE-NANO), IEEE Nanotechnol Council, Sendai, Japan, 22–25 August 2016; pp. 371–374. [Google Scholar]
- Khan, J.; Momin, S.A.; Mariatti, M. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon 2020, 168, 65–112. [Google Scholar] [CrossRef]
- Feng, C.-P.; Yang, L.-Y.; Yang, J.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Lan, H.-B.; Yang, W. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review. Compos. Commun. 2020, 22, 100528. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
- Zhao, L.; Phelan, P. Thermal contact conductance across filled polyimide films at cryogenic temperatures. Cryogenics 1999, 39, 803–809. [Google Scholar] [CrossRef]
- Ruan, K.; Guo, Y.; Lu, C.; Shi, X.; Ma, T.; Zhang, Y.; Kong, J.; Gu, J. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Tong, S.; Guo, X.; Ye, J.; Liu, J.; Bao, C. Preparation of Thermally Conductive Silicone Rubber-Based Ultra-Thin Sheets with Low Thermal Resistance and High Mechanical Properties. Processes 2023, 11, 1184. https://doi.org/10.3390/pr11041184
Liu M, Tong S, Guo X, Ye J, Liu J, Bao C. Preparation of Thermally Conductive Silicone Rubber-Based Ultra-Thin Sheets with Low Thermal Resistance and High Mechanical Properties. Processes. 2023; 11(4):1184. https://doi.org/10.3390/pr11041184
Chicago/Turabian StyleLiu, Mengqi, Shengfu Tong, Xinhua Guo, Jing Ye, Jianping Liu, and Chenlu Bao. 2023. "Preparation of Thermally Conductive Silicone Rubber-Based Ultra-Thin Sheets with Low Thermal Resistance and High Mechanical Properties" Processes 11, no. 4: 1184. https://doi.org/10.3390/pr11041184
APA StyleLiu, M., Tong, S., Guo, X., Ye, J., Liu, J., & Bao, C. (2023). Preparation of Thermally Conductive Silicone Rubber-Based Ultra-Thin Sheets with Low Thermal Resistance and High Mechanical Properties. Processes, 11(4), 1184. https://doi.org/10.3390/pr11041184