Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products
Abstract
:1. Introduction
1.1. Background
1.2. Objectives and Review Methodology
2. Electrodeposition of Copper
2.1. Key Concepts
- Type of the electrocatalyst—size and orientation, surface morphology, crystal structure and phase composition, oxidation state (valency).
- Supporting electrolyte—pH, concentration, anion, cation and its associated electrical fields, and could be interchanged.
- Electrical field.
2.2. Key Insights
3. Electrodeposition of Oxide-Derived Copper
4. Electrodeposition of Copper Alloys
5. Summary and Future Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifian, R.; Wagterveld, R.M.; Digdaya, I.A.; Xiang, C.; Vermaas, D.A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 2021, 14, 781–814. [Google Scholar] [CrossRef]
- Ren, T.; Patel, M.; Blok, K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 2006, 31, 425–451. [Google Scholar] [CrossRef] [Green Version]
- Madeddu, S.; Ueckerdt, F.; Pehl, M.; Peterseim, J.; Lord, M.; Kumar, K.A.; Krüger, C.; Luderer, G. The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 2020, 15, 124004–124019. [Google Scholar] [CrossRef]
- Ma, J.; Li, L.; Wang, H.; Du, Y.; Ma, J.; Zhang, X.; Wang, Z. Carbon Capture and Storage: History and the Road Ahead. Engineering 2022, 14, 33–43. [Google Scholar] [CrossRef]
- Nessi, E.; Papadopoulos, A.I.; Seferlis, P. A review of research facilities, pilot and commercial plants for solvent-based post-combustion CO2 capture: Packed bed, phase-change and rotating processes. Int. J. Greenh. Gas Control 2021, 111, 103474–103504. [Google Scholar] [CrossRef]
- Welch, A.J.; Dunn, E.; DuChene, J.S.; Atwater, H.A. Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion. ACS Energy Lett. 2020, 5, 940–945. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Author Correction: Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2022, 5, 75–76. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Li, K.; Yu, H.; Li, F. Materials and system design for direct electrochemical CO2 conversion in capture media. J. Mater. Chem. A 2021, 9, 18785–18792. [Google Scholar] [CrossRef]
- Larrea, C.; Torres, D.; Avilés-Moreno, J.R.; Ocón, P. Multi-parameter study of CO2 electrochemical reduction from concentrated bicarbonate feed. J. CO2 Util. 2022, 57, 101878. [Google Scholar] [CrossRef]
- Lee, G.; Li, Y.C.; Kim, J.-Y.; Peng, T.; Nam, D.-H.; Sedighian Rasouli, A.; Li, F.; Luo, M.; Ip, A.H.; Joo, Y.-C.; et al. Electrochemical upgrade of CO2 from amine capture solution. Nat. Energy 2021, 6, 46–53. [Google Scholar] [CrossRef]
- Pérez-Gallent, E.; Vankani, C.; Sánchez-Martínez, C.; Anastasopol, A.; Goetheer, E. Integrating CO2 Capture with Electrochemical Conversion Using Amine-Based Capture Solvents as Electrolytes. Ind. Eng. Chem. Res. 2021, 60, 4269–4278. [Google Scholar] [CrossRef]
- Jia, S.; Ma, X.; Sun, X.; Han, B. Electrochemical Transformation of CO2 to Value-Added Chemicals and Fuels. CCS Chem. 2022, 4, 3213–3229. [Google Scholar] [CrossRef]
- Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C.M.; Ozden, A.; Dinh, C.T.; Li, J.; Wang, Y.; et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Dinh, C.-T.; Burdyny, T.; Kibria, M.G.; Seifitokaldani, A.; Gabardo, C.M.; García de Arquer, F.P.; Kiani, A.; Edwards, J.P.; De Luna, P.; Bushuyev, O.S.; et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García de Arquer, F.P.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A.R.; Nam, D.-H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 2020, 367, 661–666. [Google Scholar] [CrossRef]
- Hernandez-Aldave, S.; Andreoli, E. Fundamentals of Gas Diffusion Electrodes and Electrolysers for Carbon Dioxide Utilisation: Challenges and Opportunities. Catalysts 2020, 10, 713. [Google Scholar] [CrossRef]
- Jeng, E.; Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 2020, 5, 1768–1775. [Google Scholar] [CrossRef]
- Lees, E.W.; Mowbray, B.A.W.; Parlane, F.G.L.; Berlinguette, C.P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 2022, 7, 55–64. [Google Scholar] [CrossRef]
- Li, M.; Yang, K.; Abdinejad, M.; Zhao, C.; Burdyny, T. Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: A review. Nanoscale 2022, 14, 11892–11908. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Quiroz-Arita, C.; Diaz, L.A.; Lister, T.E. Intensified co-electrolysis process for syngas production from captured CO2. J. CO2 Util. 2021 43, 101365–101374. [CrossRef]
- Tan, Y.C.; Lee, K.B.; Song, H.; Oh, J. Modulating Local CO2 Concentration as a General Strategy for Enhancing C−C Coupling in CO2 Electroreduction. Joule 2020, 4, 1104–1120. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, T. Conversion of CO2 to value-added products mediated by ionic liquids. Green Chem. 2019, 21, 2544–2574. [Google Scholar] [CrossRef]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sequera, A.C.; Díaz-Pérez, M.A.; Serrano-Ruiz, J.C. Recent Advances in the Electroreduction of CO2 over Heteroatom-Doped Carbon Materials. Catalysts 2020, 10, 1179. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Kim, Y.; Hwang, Y.J.; Won, D.H. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2020, 2, 72–98. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Li, M.; Weber, A.Z.; Ge, L.; Li, L.; Rudolph, V.; Wang, G.; Rufford, T.E. Advances and challenges in electrochemical CO2 reduction processes: An engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A 2020, 8, 1511–1544. [Google Scholar] [CrossRef]
- Zhao, J.; Xue, S.; Barber, J.; Zhou, Y.; Meng, J.; Ke, X. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 2020, 8, 4700–4734. [Google Scholar] [CrossRef]
- Fan, M.; Garbarino, S.; Tavares, A.C.; Guay, D. Progress in the electrochemical reduction of CO2 on hierarchical dendritic metal electrodes. Curr. Opin. Electrochem. 2020, 23, 145–153. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, Q.; Han, B. Electroreduction of CO2 in Ionic Liquid-Based Electrolytes. Innovation 2020, 1, 100016–100041. [Google Scholar] [CrossRef]
- Cui, Y.; He, B.; Liu, X.; Sun, J. Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Ind. Eng. Chem. Res. 2020, 59, 20235–20252. [Google Scholar] [CrossRef]
- Yang, C.-H.; Nosheen, F.; Zhang, Z.-C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 1412–1430. [Google Scholar] [CrossRef]
- Masel, R.I.; Liu, Z.; Yang, H.; Kaczur, J.J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C.P. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 2021, 16, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. Progress and Perspective for In Situ Studies of CO2 Reduction. J. Am. Chem. Soc. 2020, 142, 9567–9581. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Zhang, J. Architectural Design for Enhanced C 2 Product Selectivity in Electrochemical CO2 Reduction Using Cu-Based Catalysts: A Review. ACS Nano 2021, 15, 7975–8000. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Zhang, K.; Zhang, L.; Zhang, Y.; Lei, Y.; Sun, X. Recent Development of Electrocatalytic CO2 Reduction Application to Energy Conversion. Small 2021, 17, 2100323. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, J.; Ma, Y.; Zhou, J.; Wang, Y.; Lu, P.; Yin, J.; Ye, R.; Zhu, Z.; Fan, Z. Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper-Based Catalysts toward Multicarbon Products. Adv. Funct. Mater. 2021, 31, 2102151–2102179. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, K.; Li, Y.; Wang, Y. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 3, 1313–1332. [Google Scholar] [CrossRef]
- Li, M.; Idros, M.N.; Wu, Y.; Burdyny, T.; Garg, S.; Zhao, X.S.; Wang, G.; Rufford, T.E. The role of electrode wettability in electrochemical reduction of carbon dioxide. J. Mater. Chem. A 2021, 9, 19369–19409. [Google Scholar] [CrossRef]
- Woldu, A.R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340–214369. [Google Scholar] [CrossRef]
- Sargeant, E.; Rodríguez, P. Electrochemical conversion of CO2 in non-conventional electrolytes: Recent achievements and future challenges. Electrochem. Sci. Adv. 2022, e2100178. [Google Scholar] [CrossRef]
- Ruiz-López, E.; Gandara-Loe, J.; Baena-Moreno, F.; Reina, T.R.; Odriozola, J.A. Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects. Renew. Sustain. Energy Rev. 2022, 161, 112329–112355. [Google Scholar] [CrossRef]
- Miao, M.; Duan, H.; Luo, J.; Wang, X. Recent progress and prospect of electrodeposition-type catalysts in carbon dioxide reduction utilizations. Mater. Adv. 2022, 3, 6968–6987. [Google Scholar] [CrossRef]
- Kibria, M.G.; Edwards, J.P.; Gabardo, C.M.; Dinh, C.; Seifitokaldani, A.; Sinton, D.; Sargent, E.H. Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Adv. Mater. 2019, 31, 1807166–1807190. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1989, 85, 2309. [Google Scholar] [CrossRef]
- Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Vayenas, C.G., White, R.E., Gamboa-Aldeco, M.E., Eds.; Springer: New York, NY, USA, 2008; Volume 42, pp. 89–189. ISBN 978-0-387-49488-3. [Google Scholar]
- Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes. J. Phys. Chem. B 2002, 106, 15–17. [Google Scholar] [CrossRef]
- Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y. Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes. J. Electroanal. Chem. 2002, 533, 135–143. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 2003, 199, 39–47. [Google Scholar] [CrossRef]
- Murata, A.; Hori, Y. Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Eren, B.; Zherebetskyy, D.; Patera, L.L.; Wu, C.H.; Bluhm, H.; Africh, C.; Wang, L.-W.; Somorjai, G.A.; Salmeron, M. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 2016, 351, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.R.; Gomes, A.; Condeço, J.; Fernandes, T.R.C.; Pardal, T.; Sequeira, C.A.C.; Branco, J.B. Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochim. Acta 2013, 102, 388–392. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, L.; Canepa, S.; Sun, H.; Yesibolati, M.N.; Sherburne, M.; Xu, R.; Sritharan, T.; Loo, J.S.C.; Ager, J.W., III; et al. Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction. J. Mater. Chem. A 2017, 5, 11905–11916. [Google Scholar] [CrossRef] [Green Version]
- Scholten, F.; Sinev, I.; Bernal, M.; Roldan Cuenya, B. Plasma-Modified Dendritic Cu Catalyst for CO2 Electroreduction. ACS Catal. 2019, 9, 5496–5502. [Google Scholar] [CrossRef] [Green Version]
- Keerthiga, G.; Viswanathan, B.; Chetty, R. Electrochemical reduction of CO2 on electrodeposited Cu electrodes crystalline phase sensitivity on selectivity. Catal. Today 2015, 245, 68–73. [Google Scholar] [CrossRef]
- Rahaman, M.; Dutta, A.; Zanetti, A.; Broekmann, P. Electrochemical Reduction of CO2 into Multicarbon Alcohols on Activated Cu Mesh Catalysts: An Identical Location (IL) Study. ACS Catal. 2017, 7, 7946–7956. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T.; Liu, B.; Cheng, D.; Hu, C.; Zhang, G.; Zhu, W.; Wang, H.; Zhao, Z.-J.; Gong, J. Grain-Boundary-Rich Copper for Efficient Solar-Driven Electrochemical CO2 Reduction to Ethylene and Ethanol. J. Am. Chem. Soc. 2020, 142, 6878–6883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Straub, S.; Shen, L.; Hermans, Y.; Schmatz, P.; Reichert, A.M.; Hofmann, J.P.; Katsounaros, I.; Etzold, B.J.M. Probing CO2 Reduction Pathways for Copper Catalysis Using an Ionic Liquid as a Chemical Trapping Agent. Angew. Chem. Int. Ed. 2020, 59, 18095–18102. [Google Scholar] [CrossRef]
- Gao, L.; Qin, L.; Wu, H.; Li, X.; Qi, K.; Yi, Q.; Zhang, J.; Shi, L. Fabrication of Cu (1 0 0) facet-enhanced ionic liquid/copper hybrid catalysis via one-step electro-codeposition for CO2ER toward C2. Fuel 2022, 322, 124103. [Google Scholar] [CrossRef]
- Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size and Support Effects. Angew. Chem. Int. Ed. 2018, 57, 6192–6197. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Tsounis, C.; Kumar, P.V.; Han, Z.; Wong, R.J.; Toe, C.Y.; Zhou, S.; Bedford, N.M.; Thomsen, L.; Ng, Y.H.; et al. Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp 3-type Defect. Adv. Funct. Mater. 2020, 30, 1910118. [Google Scholar] [CrossRef]
- Lum, Y.; Kwon, Y.; Lobaccaro, P.; Chen, L.; Clark, E.L.; Bell, A.T.; Ager, J.W. Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity. ACS Catal. 2016, 6, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Lesnicenoks, P.; Knoks, A.; Piskunov, S.; Jekabsons, L.; Kleperis, J. N-Graphene Sheet Stacks/Cu Electrocatalyst for CO2 Reduction to Ethylene. Electrochem 2022, 3, 229–238. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Ma, S.; Gold, J.I.; Kenis, P.J.A.; Gewirth, A.A. Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catal. 2017, 7, 3313–3321. [Google Scholar] [CrossRef]
- Jeon, H.S.; Kunze, S.; Scholten, F.; Roldan Cuenya, B. Prism-Shaped Cu Nanocatalysts for Electrochemical CO2 Reduction to Ethylene. ACS Catal. 2018, 8, 531–535. [Google Scholar] [CrossRef]
- Dutta, A.; Rahaman, M.; Luedi, N.C.; Mohos, M.; Broekmann, P. Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catal. 2016, 6, 3804–3814. [Google Scholar] [CrossRef]
- Shin, H.-C.; Liu, M. Copper Foam Structures with Highly Porous Nanostructured Walls. Chem. Mater. 2004, 16, 5460–5464. [Google Scholar] [CrossRef]
- Shin, H.-C.; Dong, J.; Liu, M. Nanoporous Structures Prepared by an Electrochemical Deposition Process. Adv. Mater. 2003, 15, 1610–1614. [Google Scholar] [CrossRef]
- Barton, J.K.; Vertegel, A.A.; Bohannan, E.W.; Switzer, J.A. Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Copper. Chem. Mater. 2001, 13, 952–959. [Google Scholar] [CrossRef]
- Siegfried, M.J.; Choi, K.-S. Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution. Adv. Mater. 2004, 16, 1743–1746. [Google Scholar] [CrossRef]
- Joseph, S.; Kamath, P.V. Electrochemical deposition of Cu2O on stainless steel substrates: Promotion and suppression of oriented crystallization. Solid State Sci. 2008, 10, 1215–1221. [Google Scholar] [CrossRef]
- Wang, L.C.; de Tacconi, N.R.; Chenthamarakshan, C.R.; Rajeshwar, K.; Tao, M. Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 2007, 515, 3090–3095. [Google Scholar] [CrossRef]
- Septina, W.; Ikeda, S.; Khan, M.A.; Hirai, T.; Harada, T.; Matsumura, M.; Peter, L.M. Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim. Acta 2011, 56, 4882–4888. [Google Scholar] [CrossRef]
- Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M.T.M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194–12201. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Deng, Y.; Handoko, A.D.; Chen, C.S.; Malkhandi, S.; Yeo, B.S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catal. 2015, 5, 2814–2821. [Google Scholar] [CrossRef]
- Kwon, Y.; Lum, Y.; Clark, E.L.; Ager, J.W.; Bell, A.T. CO2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper. ChemElectroChem 2016, 3, 1012–1019. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Zhou, X.; Li, Q.; Wang, H.; Yi, J.; Liu, Y.; Zhang, J. Simply and effectively electrodepositing Bi-MWCNT-COOH composite on Cu electrode for efficient electrocatalytic CO2 reduction to produce HCOOH. J. CO2 Util. 2020, 37, 106–112. [Google Scholar] [CrossRef]
- Ren, D.; Ang, B.S.-H.; Yeo, B.S. Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu x Zn Catalysts. ACS Catal. 2016, 6, 8239–8247. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Verma, S.; Ma, S.; Fister, T.T.; Timoshenko, J.; Frenkel, A.I.; Kenis, P.J.A.; Gewirth, A.A. Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Montiel, I.Z.; Erni, R.; Kiran, K.; Rahaman, M.; Drnec, J.; Broekmann, P. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 2020, 68, 104331–104343. [Google Scholar] [CrossRef]
- Ye, K.; Cao, A.; Shao, J.; Wang, G.; Si, R.; Ta, N.; Xiao, J.; Wang, G. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci. Bull. 2020, 65, 711–719. [Google Scholar] [CrossRef]
- Hou, X.; Cai, Y.; Zhang, D.; Li, L.; Zhang, X.; Zhu, Z.; Peng, L.; Liu, Y.; Qiao, J. 3D core–shell porous-structured Cu@Sn hybrid electrodes with unprecedented selective CO2 -into-formate electroreduction achieving 100%. J. Mater. Chem. A 2019, 7, 3197–3205. [Google Scholar] [CrossRef]
- Kim, C.; Möller, T.; Schmidt, J.; Thomas, A.; Strasser, P. Suppression of Competing Reaction Channels by Pb Adatom Decoration of Catalytically Active Cu Surfaces During CO2 Electroreduction. ACS Catal. 2019, 9, 1482–1488. [Google Scholar] [CrossRef]
- Rahaman, M.; Kiran, K.; Zelocualtecatl Montiel, I.; Dutta, A.; Broekmann, P. Suppression of the Hydrogen Evolution Reaction Is the Key: Selective Electrosynthesis of Formate from CO2 over Porous In 55 Cu 45 Catalysts. ACS Appl. Mater. Interfaces 2021, 13, 35677–35688. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Zhu, Q.; Chu, M.; Jia, S.; Zhai, J.; Wu, H.; Wu, P.; Han, B. Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene. Green Chem. 2020, 22, 7560–7565. [Google Scholar] [CrossRef]
- Lou, W.; Peng, L.; He, R.; Liu, Y.; Qiao, J. CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO2-to-formate conversion. J. Colloid Interface Sci. 2022, 606, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Jerng, S.E.; Gallant, B.M. Electrochemical reduction of CO2 in the captured state using aqueous or nonaqueous amines. iScience 2022, 25, 104558–104573. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Tzirakis, F.; Tsivintzelis, I. and Seferlis, P. Phase-change solvents and processes for postcombustion CO2 capture: A detailed review. Ind. Eng. Chem. Res. 2019, 58, 5088–5111. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Liyanage, W.; Masud, J.; Kapila, S.; Nath, M. Selective electroreduction of CO2 to carbon-rich products with a simple binary copper selenide electrocatalyst. J. Mater. Chem. A 2021, 9, 7150–7161. [Google Scholar] [CrossRef]
- Saxena, A.; Kapila, S.; Medvedeva, J.E.; Nath, M. Copper Cobalt Selenide as a Bifunctional Electrocatalyst for the Selective Reduction of CO2 to Carbon-Rich Products and Alcohol Oxidation. ACS Appl. Mater. Interfaces 2023, 15, 14433–14446. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Liyanage, W.P.R.; Kapila, S.; Nath, M. Nickel selenide as an efficient electrocatalyst for selective reduction of carbon dioxide to carbon-rich products. Catal. Sci. Technol. 2022, 12, 4727–4739. [Google Scholar] [CrossRef]
- Saxena, A.; Singh, H.; Nath, M. Cobalt telluride electrocatalyst for selective electroreduction of CO2 to value-added chemicals. Mater. Renew. Sustain. Energy 2022, 11, 115–129. [Google Scholar] [CrossRef]
- Dhasade, S.S.; Patil, J.S.; Kim, J.H.; Han, S.H.; Rath, M.C.; Fulari, V.J. Synthesis of CuS nanorods grown at room temperature by electrodeposition method. Mater. Chem. Phys. 2012, 137, 353–358. [Google Scholar] [CrossRef]
- Jin, K.; Zhou, M.; Zhao, H.; Zhai, S.; Ge, F.; Zhao, Y.; Cai, Z. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Electrochim. Acta 2019, 295, 668–676. [Google Scholar] [CrossRef]
- Xi, F.; Liu, H.; Li, W.; Zhu, L.; Geng, H.; Quan, L.; Liang, W. Fabricating CuS counter electrode for quantum dots-sensitized solar cells via electro-deposition and sulfurization of Cu2O. Electrochim. Acta 2015, 178, 329–335. [Google Scholar] [CrossRef]
Year | Author | Summary |
---|---|---|
2019 | Chen et al. [22] | Reviewed the role of ionic liquid (IL) as a solvent, electrolyte, CO2 absorbents, CO2 activating agents, catalysts or co-catalysts and their contribution towards the conversion of CO2 |
2019 | Nitopi et al. [23] | Reviewed different aspects of the complex interplay associated with copper-based catalysts and their mechanisms towards formation of products via electrochemical CO2 conversion covering the experimental and theoretical elements. |
2020 | Pérez-Sequera et al. [24] | Reviewed works that employed carbon that has been doped with boron, fluorine, nitrogen and sulphur to electroreduce CO2, with a focus on the synthesis processes and the electrochemical performance of the resultant materials. |
2020 | Nguyen et al. [25] | Reviewed developments in catalysts and their design strategies (nano structuring, alloying, doping) for the electrochemical conversion of CO2 to CO. |
2020 | Garg et al. [26] | Reviewed the impact of design and operating conditions related to electrolyser configurations, choice of electrolytes, structure of electrode and their relation to the reaction conditions at catalyst sites in a CO2 electrolyser and the efficiency of the process. |
2020 | Zhao et al. [27] | Reviewed activities in copper catalysts with different morphologies and forms (metallic, oxide-derived, halide-derived), covering different electrolytes (aqueous, non-aqueous) along with the catalysts’ electrochemical performance towards the CO2 reduction. |
2020 | Fan et al. [28] | Discussed the mechanisms and the function of the catalysts with dendritic nature, emphasising the need to combine in situ spectroscopic techniques with computational simulations that confirmed the nature of these active sites and provided insights into the mechanisms associated with dendrite morphology-based catalysts. |
2020 | Yang et al. [29] | Reviewed the progress in CO2 electroreduction involving ILs with different catalysts and their mechanism in IL-based electrolytes. |
2020 | Cui et al. [30] | Reviewed three research areas on electrochemical CO2 reduction in ionic liquids (ILs) including (i) the adsorption of CO2 by ILs, (ii) the electrolytes composed of ILs and (iii) the electrode modification in ILs. |
2021 | Yang et al. [31] | Summarised the most recent developments in structural modification of metals that catalyse the CO2 conversion, including size, crystal facets and phase composition, grain structure, surface, interface and modification of ligands. |
2021 | Masel et al. [32] | Reviewed the state-of-the-art CO2 electrolysers from an industrial perspective, highlighting the catalyst developments associated with CO2 conversion to CO, formic acid. Future perspectives and catalyst design strategies associated with C2, C2+ products were provided. |
2020 | Li et al. [33] | Reviewed developments of in situ studies to monitor the reaction intermediates and catalyst evolution during the electrochemical conversion of CO2 process with a future prospective suggestion. |
2021 | Xiao et al. [34] | Reviewed the tailored copper electrocatalyst architectures for electrochemical CO2 conversion and their correlation between the architecture and selectivity towards the formation of C2 products. |
2021 | Liang et al. [35] | Reviewed different types of electrocatalysts including noble metals and their derived compounds, transition metals and their derived compounds, organic polymer and carbon-based materials for the electrochemical conversion of CO2. Discussed the major products formed in relation to the faradaic efficiency, current density and onset potential along with the reaction mechanisms. |
2021 | Yu et al. [36] | Reviewed approaches in catalyst engineering focusing on composition, size, crystal facet, surface and interface effects towards the electrochemical conversion of CO2 to C2, C2+ products. |
2021 | Luo et al. [37] | Reviewed the performance of gas diffusion electrodes coated with different catalysts towards CO2 reduction to multi carbon products and their operating life time along with future prospects for advancing the electroreduction of CO2. |
2021 | Li et al. [38] | Reviewed advances in the catalysts coated onto the gas diffusion layer and their electrochemical performance as a cathode in a CO2 electrolyser. The influence of altering the wettability of the gas diffusion layer towards improving the cathode performance along with their challenges and opportunities for development was also reviewed. |
2022 | Woldu et al. [39] | Reviewed advances in the activity and selectivity of CO2 reduction to C2+ products over different Cu-based catalysts such as metallic copper, oxide-derived copper and halide-derived copper covering the facet-dependant surface oxide relationships. |
2022 | Sargeant et al. [40] | Reviewed the electrochemical conversion of CO2 in organic solvents, ionic liquids, solid electrolytes and brines. |
2022 | Ruiz-López et al. [41] | Reviewed progress on C2, C2+ products produced from the electrochemical route considering the catalyst design, electrochemistry and techno-economic aspects. |
2022 | Miao et al. [42] | Provided a general overview on the progress and prospect of electrodeposition-type catalysts in CO2 reduction. |
Substrate | Electrolyte | Deposition Conditions | Morphology | Major Product (s) | FEC2H4, % | Reference |
---|---|---|---|---|---|---|
Copper mesh | 0.15 M CuSO4·5H2O + 0.5 H2SO4 | −0.55 V vs. SCE until a final deposition charge of 25 C cm−2 was reached | Dendritic with different size and thickness | CH4, C2H4 | 5 | [51] |
Copper mesh | 0.15 M CuSO4·5H2O + 0.5 MH2SO4 | −0.65 V vs. SCE until a final deposition charge of 25 C cm−2 was reached | Dendritic with different size and thickness | CH4, C2H4 | 10 | [51] |
Copper mesh | 0.15 M CuSO4·5H2O + 0.5 MH2SO4 | −0.85 V vs. SCE until a final deposition charge of 25 C cm−2 was reached. | Dendritic with different size and thickness | C2H4 | 8 | [51] |
Copper mesh | 0.15 M CuSO4·5H2O + 0.5 M H2SO4 | −1.05 V vs. SCE until a final deposition charge of 25 C cm−2 was reached | Dendritic with different size and thickness | C2H4 | 8 | [51] |
Copper mesh | 0.15 M CuSO4·5H2O + 1.5 M H2SO4 | −1.15 V vs. SCE until a final deposition charge of 25 C cm−2 was reached | Honey comb | C2H4 | 8 | [51] |
Copper foil | 0.15 M CuSO4·5H2O + 1.5 M H2SO4 | −1.15 V vs. SCE until a final deposition charge of 25 C cm−2 was reached | Honey comb | C2H4, C2H6 | 10 | [51] |
Copper foil | 0.2 M CuSO4·5H2O + 1.5 MH2SO4 | −1.15 V vs. SCE until a final deposition charge of 25 C cm−2 was reached | 3D foam | C2H4, C2H6 | 9 | [51] |
Copper sheet | 0.025 M CuSO4·5H2O + 1 M H2SO4 | −0.3 V (vs. Ag/AgCl) for 300 s | Spheres of Cu nanoparticles | CH4, C2H8 | 43 | [54] |
Copper sheet | 0.25 M CuSO4·5H2O + 1 M H2SO4 | −0.3 V (vs. Ag/AgCl) for 300 s | Densely populated larger cubes | CH4, C2H8 | 28 | [54] |
Copper mesh | CuSO4·5H2O + H2SO4 | −1.1 V vs. RHE | Dendritic with different size and thickness * | HCOO−, C2+ alcohols (ethanol, n-propanol) | 49.2 | [55] |
Carbon paper | Cu(NO3)2 + H2SO4 | −0.3 V (vs. Ag/AgCl) for 1800 s | Tiny particle with rich grain boundary | C2H4, C2H5OH | 73 | [56] |
Carbon paper | Cu(NO3)2 + H2SO4 | −0.3 V (vs. Ag/AgCl) for 1800 s | Uniform lattice-oriented particles without grain boundaries | C2H4, C2H5OH | 49 | [56] |
Copper plate | CuSO4·5H2O + H2SO4 | 12 V | Porous and dendritic # | H2, HCOOH | 20 | [57] |
Carbon paper | CuSO4·5H2O + H2SO4 | 0.3 V vs. Ag/AgCl | Smooth and flat # | C2H4, C2H5OH | 40.67 | [58] |
Substrate | Electrolyte | Mode of Deposition | Morphology | Major Product (s) | FEC2H4, % | Reference |
---|---|---|---|---|---|---|
3D vertical graphene | 0.02 M CuSO4·5H2O + 0.15 M lactic acid | Pulsed galvanostatic | nanoparticles | formate | ~3 | Ma et al. [60] |
3D vertical graphene-argon treated | 0.02 M CuSO4·5H2O + 0.15 M lactic acid | Pulsed galvanostatic | nanoparticles | ~6 | ||
2D graphene | 0.02 M CuSO4·5H2O + 0.15 M lactic acid | Pulsed galvanostatic | nanoparticles | NA | ||
Pure graphite | 0.01-2 ppm CuSO4·H2O + 0.1 M NaHCO3 | Potentiostatic deposition | nanoparticles | methane | N.D. | Ager et al. [61] |
Carbon nanotubes (CNTs) | 2 ppm CuSO4·H2O + 0.1 M NaHCO3 | Potentiostatic deposition | nanoparticles | N.D. | ||
Graphene oxide (GO) | 2 ppm CuSO4·H2O + 0.1 M NaHCO3 | Potentiostatic deposition | nanoparticles | N.D. | ||
nitrogen-doped Graphene sheet stacks | 0.05 M–1.25 M CuSO4·5H2O aqueous solution | Pulse mode | Dendritic, needles | ethylene | 27% | Lesnicenoks et al. [62] |
Substrate | Additive | Deposition Media | Mode of Deposition | Morphology | Dominant Facet (hkl) | Test Electrolyte and Cell Type | Product(s) | Performance | Reference |
---|---|---|---|---|---|---|---|---|---|
CP | PVP | 6.5 mM Cu(NO3)2 + 0.5 g PVP + 50 mL ultra-pure water | Potentiostatic | Grain boundary rich | {111} | 1 M KOH saturated with 5 mL min−1 of CO2 and flow cell | C2H4, C2H5OH | FE of 70–73% in a potential range between −1.0 and −1.3 V vs. RHE | [56] |
Au | DAT | 0.1 M CuSO4·5H2O + H2SO4 +10 mM DAT | Galvanostatic | Dot | {111} | 1 M KHCO3 and H-Cell | C2H4, C2H5OH | CuDAT-wire samples exhibited the best CO2 reduction activities with an FE for C2H4 product formation reaching 40% at −0.5 V vs. RHE, 20% for C2H5OH at −0.5 V vs. RHE | [63] |
Au | DAT | 0.1 M CuSO4·5H2O + H2SO4 + 10 mM DAT | Galvanostatic | Wire | {111} | ||||
Au | DAT | 0.1 M CuSO4·5H2O + H2SO4 + 10 mM DAT | Galvanostatic | Amorphous | {111} | ||||
Au | DTAB | 0.1 M CuSO4·5H2O + H2SO4 + 10 mM DTAB | Galvanostatic | Smooth | {111} | ||||
Au | ThonB | 0.1 M CuSO4·5H2O + H2SO4 + 10 mM ThonB | Galvanostatic | Smooth | {111} | ||||
CP | DAT | 0.1 M CuSO4·5H2O + H2SO4 + 10 mM DAT | Galvanostatic | Agglomerates | - | 1 M KOH and Flow electrolysis cell | C2H4, C2H5OH | The FE for C2H4 production for the CuDAT-wire catalyst reaches and maintains a maximum value of ∼40% at a potential of −0.5 V vs. RHE for C2H4, when tested in a flow electrolysis cell. Around 20% of FE is achieved for C2H5OH at −0.5 V vs. RHE | [63] |
Cu foil | Janus Green B | 0.25 M CuSO4·5H2O + 0.3 M H3BO3 + 0.4–2.0 mM Janus Green B | Galvanostatic | Prism shape | {111}, {200} | 0.1 M KHCO3 Two-compartment electrochemical cell | C2H4 | FE of 27.8% C2H4 at 1.1 V vs. RHE | [64] |
Substrate | Alloy | Deposition Media | Mode of Deposition | Morphology | Test Electrolyte and Cell Type | Product(s) | FE, % | Reference |
---|---|---|---|---|---|---|---|---|
Cu foil | Cu10Zn | 0.3 M CuSO4·5H2O + 2.3 M lactic acid + 10 mM ZnCl2 + NaOH (for adjusting the pH from 9.6 to 12.0) | Galvanostatic | Spherical | 0.1 M KHCO3 and H-Cell | C2H4 | 4.52 at −1.05 V | [77] |
C2H5OH | 6.38 at −1.05 V | |||||||
Cu4Zn | Galvanostatic | Spherical | C2H4 | 10.75 at −1.05 V | ||||
C2H5OH | 29.1 at −1.05 V | |||||||
Cu2Zn | Galvanostatic | Spherical | C2H4 | 1.85 at −1.05 V | ||||
C2H5OH | 11.65 at −1.05 V | |||||||
Carbon Paper | CuAg | 0.1 M CuSO4·5H2O + 1 mM AgSO4 H2SO4 + 10 mM DAT | Galvanostatic | Film | 1 M KOH and flow electrolyser | C2H4 | 23.5 at −0.72 V | [78] |
C2H5OH | 16.8 at −0.72 V | |||||||
Wire | 1 M KOH and flow electrolyser | C2H4 | 51.8 at −0.71 V | |||||
C2H5OH | 16.9 at −0.71 V | |||||||
Cu foil | Cu15Ag85 | 20 mM CuSO4 + 2 mM Ag2SO4 + 1.5 M H2SO4 + 0.1 M Na3C6H5O7 | Galvanostatic | Foam | CO2-saturated 0.5 M KHCO3 electrolytes and electrolysis cell | C2H4 | 36.56 at −1.1 V | [79] |
Cu foam | CuSn | 0.2 M SnSO4 + 1.5 M H2SO4 | Galvanostatic | Nanoparticles | 0.5 M KCl solution purged with 5% N2/CO2 and H-cell | HCOO− | 90.0 ± 2.7 at −1.14 V | [80] |
ionic Cu foil | CuSn | 0.2 M CuSO4 5H2O + 0.7 M H2SO4 + 0.15 M Na3C6H5O7 + 0.03 mM C18H29NaO3S + 0.6 M SnCl2 2H2O | Galvanostatic | 3D core–shell porous structures | N2-saturated KHCO3 and electrolysis cell | HCOO− | 100 at −0.9 V | [81] |
Cu foil | CuPb | 0.01 M Pb(ClO4)2·xH2O + 0.1 MHClO4 | Potentiostatic | - | 0.1 M KHCO3 saturated with CO2 and two-compartment electrochemical cell | HCOO− | 70.5 ± 0.7 at −1.05 V | [82] |
Cu foil | CuIn | 5 mM CuSO4·5H2O + 20 mM In2(SO4)3 + 1.5 M H2SO4 | Galvanostatic | Smooth | 0.5 M KHCO3 saturated with CO2 and H-cell | HCOO− | 96.8 at −1.0 V | [83] |
Carbon Paper | CuPd | 0.1 M CuSO4·5H2O + 1 mM PdSO4 + 0.1 M H2SO4 | Galvanostatic | Tetrahedron structures | CO2-saturated 0.1 M KCl solution and H-cell | C2H4 | 45.2 at −1.2 V | [84] |
Cu foam | CuBi | 4 μmol Cu(NO3)3·3H2O + 4 μmol Bi(NO3)3·5H2O + 20 μmol Na3C6H5O7 2H2O + 20 μmol CH4N2O + 4 μmol C10H16N2O8 + 20 μmol CHNaO2 | Potentiostatic | Needle-like structure | 0.5 M KHCO3 saturated with CO2 and H-cell | HCOO− | 94.4 at −0.97 V | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniam, K.K.; Maniam, M.; Diaz, L.A.; Kukreja, H.K.; Papadopoulos, A.I.; Kumar, V.; Seferlis, P.; Paul, S. Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products. Processes 2023, 11, 1148. https://doi.org/10.3390/pr11041148
Maniam KK, Maniam M, Diaz LA, Kukreja HK, Papadopoulos AI, Kumar V, Seferlis P, Paul S. Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products. Processes. 2023; 11(4):1148. https://doi.org/10.3390/pr11041148
Chicago/Turabian StyleManiam, Kranthi Kumar, Madhuri Maniam, Luis A. Diaz, Hari K. Kukreja, Athanasios I. Papadopoulos, Vikas Kumar, Panos Seferlis, and Shiladitya Paul. 2023. "Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products" Processes 11, no. 4: 1148. https://doi.org/10.3390/pr11041148
APA StyleManiam, K. K., Maniam, M., Diaz, L. A., Kukreja, H. K., Papadopoulos, A. I., Kumar, V., Seferlis, P., & Paul, S. (2023). Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products. Processes, 11(4), 1148. https://doi.org/10.3390/pr11041148