Portable NIR Spectroscopic Application for Coffee Integrity and Detection of Adulteration with Coffee Husk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Spectra Collection
2.3. Chemical Composition Determination
2.4. Spectra Data Processing
2.5. Principal Component Analysis (PCA)
2.6. Data Partitioning
2.7. Multivariate Data Modelling
2.8. Model Development Evaluation
3. Results and Discussion
3.1. Spectral Profile Examination
3.2. Principal Component Analysis (PCA)
3.3. Identification Model
4. Multivariate Quantification of Adulterant
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ting, D.F.; Pui, L.P.; Solihin, M.I. Feasibility of fraud detection in milk powder using a handheld near-infrared spectroscopy. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020. [Google Scholar]
- Spink, J.; Moyer, D.C. Defining the public health threat of food fraud. J. Food Sci. 2011, 76, R157–R163. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Thorburn Burns, D.; Tweed, L.; Walker, M. Ground roast coffee: Review of analytical strategies to estimate geographic origin, species authenticity and adulteration by dilution. Food Anal. Methods 2017, 10, 2302–2310. [Google Scholar] [CrossRef]
- Toci, A.T.; Farah, A.; Pezza, H.R.; Pezza, L. Coffee adulteration: More than two decades of research. Crit. Rev. Anal. Chem. 2016, 46, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Choi, K.H.; Park, S.M.; Shin, D.; Joh, H.K.; Cho, E. The benefit of bone health by drinking coffee among Korean postmenopausal women: A cross-sectional analysis of the fourth & fifth Korea national health and nutrition examination surveys. PLoS ONE 2016, 11, e0147762. [Google Scholar]
- Barbin, D.F.; Felicio, A.L.D.S.M.; Sun, D.W.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Prodolliet, J.; Bruelhart, M.; Blanc, M.B.; Leloup, V.; Cherk, G.; Donnelly, C.M.; Viani, R. Adulteration of soluble coffee with coffee husks and parchments. J. AOAC Int. 1995, 78, 761–767. [Google Scholar] [CrossRef]
- Catelani, T.A.; Santos, J.R.; Páscoa, R.N.; Pezza, L.; Pezza, H.R.; Lopes, J.A. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study. Talanta 2018, 179, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Núñez, N.; Saurina, J.; Núñez, O. Non-targeted HPLC-FLD fingerprinting for the detection and quantitation of adulterated coffee samples by chemometrics. Food Control 2021, 124, 107912. [Google Scholar] [CrossRef]
- Esteban-Díez, I.; González-Sáiz, J.M.; Sáenz-González, C.; Pizarro, C. Coffee varietal differentiation based on near infrared spectroscopy. Talanta 2007, 71, 221–229. [Google Scholar] [CrossRef]
- de Carvalho Couto, C.; Freitas-Silva, O.; Morais Oliveira, E.M.; Sousa, C.; Casal, S. Near-infrared spectroscopy applied to the detection of multiple adulterants in roasted and ground arabica coffee. Foods 2021, 11, 61. [Google Scholar] [CrossRef]
- Tavares, K.M.; Lima, A.R.; Nunes, C.A.; Silva, V.A.; Mendes, E.; Casal, S.; Pereira, R.G.A. Free tocopherols as chemical markers for Arabica coffee adulteration with maize and coffee by-products. Food Control 2016, 70, 318–324. [Google Scholar] [CrossRef]
- Uncu, A.T.; Uncu, A.O. Plastid trnH-psbA intergenic spacer serves as a PCR-based marker to detect common grain adulterants of coffee (Coffea arabica L.). Food Control 2018, 91, 32–39. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Oliveira, L.S.; Franca, A.S.; Augusti, R. Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. J. Food Compos. Anal. 2009, 22, 257–261. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for rapid authentication and detection of adulteration of food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef]
- Ebrahimi-Najafabadi, H.; Leardi, R.; Oliveri, P.; Casolino, M.C.; Jalali-Heravi, M.; Lanteri, S. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta 2012, 99, 175–179. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Singh, M.; Rennick, K.A.; Bakota, E.L.; Jham, G.; Liu, S.X.; Vaughn, S.F. Detection of corn adulteration in Brazilian coffee (Coffea arabica) by tocopherol profiling and near-infrared (NIR) spectroscopy. J. Agric. Food Chem. 2015, 63, 10662–10668. [Google Scholar] [CrossRef]
- Correia, R.M.; Tosato, F.; Domingos, E.; Rodrigues, R.R.; Aquino, L.F.M.; Filgueiras, P.R.; Lacerda, V., Jr.; Romao, W. Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta 2018, 176, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, C.; Esteban-Díez, I.; González-Sáiz, J.-M. Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Anal. Chim. Acta 2007, 585, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Chakravartula, S.S.N.; Moscetti, R.; Bedini, G.; Nardella, M.; Massantini, R. Use of convolutional neural network (CNN) combined with FT-NIR spectroscopy to predict food adulteration: A case study on coffee. Food Control 2022, 135, 108816. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Namieśnik, J. Moving your laboratories to the field—Advantages and limitations of the use of field portable instruments in environmental sample analysis. Environ. Res. 2015, 140, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Dégardin, K.; Guillemain, A.; Roggo, Y. Comprehensive study of a handheld Raman spectrometer for the analysis of counterfeits of solid-dosage form medicines. J. Spectrosc. 2017, 2017, 3154035. [Google Scholar] [CrossRef]
- Ciza, P.H.; Sacre, P.Y.; Waffo, C.; Coïc, L.; Avohou, H.; Mbinze, J.K.; Hubert, P.; Ziemons, E. Comparing the qualitative performances of handheld NIR and Raman spectrophotometers for the detection of falsified pharmaceutical products. Talanta 2019, 202, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.D.; Santos, L.P.; Cunha, P.H.; Borghi, F.T.; Romao, W.; de Castro, E.V.; de Oliveira, E.C.; Filgueiras, P.R. Discrimination of oils and fuels using a portable NIR spectrometer. Fuel 2021, 283, 118854. [Google Scholar] [CrossRef]
- Zhao, S.; Qiu, Z.; He, Y. Transfer learning strategy for plastic pollution detection in soil: Calibration transfer from high-throughput HSI system to NIR sensor. Chemosphere 2021, 272, 129908. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Ramaker, H.J.; Sap, S.; van Asten, A.C. A calibration friendly approach to identify drugs of abuse mixtures with a portable near-infrared analyzer. Drug Test. Anal. 2022, 14, 1089–1101. [Google Scholar] [CrossRef]
- Mutz, Y.S.; do Rosario, D.; Galvan, D.; Schwan, R.F.; Bernardes, P.C.; Conte-Junior, C.A. Feasibility of NIR spectroscopy coupled with chemometrics for classification of Brazilian specialty coffee. Food Control 2023, 149, 109696. [Google Scholar] [CrossRef]
- Correia, R.M.; Andrade, R.; Tosato, F.; Nascimento, M.T.; Pereira, L.L.; Araújo, J.B.; Lacerda, V.; Romao, W. Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICR MS and portable NIR associated with sensory analysis. J. Food Compos. Anal. 2020, 94, 103637. [Google Scholar] [CrossRef]
- Vasconcelos, A.L.S.; Franca, A.S.; Gloria, M.B.A.; Mendonça, J.C. A comparative study of chemical attributes and levels of amines in defective green and roasted coffee beans. Food Chem. 2007, 101, 26–32. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Miao, X.; Miao, Y.; Gong, H.; Tao, S.; Chen, Z.; Wang, J.; Chen, Y.Z.; Chen, Y.C. NIR spectroscopy coupled with chemometric algorithms for the prediction of cadmium content in rice samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 257, 119700. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Yuan, K.; Xiao, W.; Wu, J.; Shi, C.; Xia, J.; Zhang, G.; Zhou, G. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Anal. Chim. Acta 2016, 909, 30–40. [Google Scholar] [CrossRef]
- Teye, E.; Huang, X.; Dai, H.; Chen, Q. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Guo, Y.; Zhang, A.; Zhong, H. Simultaneously verifying the original region of green and roasted coffee beans by stable isotopes and elements combined with random forest. J. Food Qual. 2022, 2022, 1308645. [Google Scholar] [CrossRef]
- Wilamowski, B.M. Neural network architectures and learning algorithms. IEEE Ind. Electron. Mag. 2009, 3, 56–63. [Google Scholar] [CrossRef]
- Inácio, M.R.C.; de Lima, K.M.G.; Lopes, V.G.; Pessoa, J.D.C.; de Almeida Teixeira, G.H. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration. Food Chem. 2013, 136, 1160–1164. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, X.; Hua, H.; Yi, Y.; Li, H.; Chen, C. Quality evaluation of decoction pieces of Rhizoma Atractylodis Macrocephalae by near infrared spectroscopy coupled with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 221, 117169. [Google Scholar] [CrossRef]
- Teye, E.; Amuah, C.L. Rice varietal integrity and adulteration fraud detection by chemometrical analysis of pocket-sized NIR spectra data. Appl. Food Res. 2022, 2, 100218. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Sun, D.W.; ElMasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef]
- Gouvea, B.M.; Torres, C.; Franca, A.S.; Oliveira, L.S.; Oliveira, E.S. Feasibility of ethanol production from coffee husks. Biotechnol. Lett. 2009, 31, 1315–1319. [Google Scholar] [CrossRef]
- Bekalo, S.A.; Reinhardt, H.-W. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. 2010, 43, 1049–1060. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Coffee processing solid wastes: Current uses and future perspectives. Agric. Wastes 2009, 9, 155–189. [Google Scholar]
- Sakhi, A.K.; Andersen, L.F.; Jacobs, D.R., Jr.; Blomhoff, R.; Svilaas, A.; Svilaas, T.; Ström, E.; Ose, L.; Blomhoff, R. Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J. Nutr. 2004, 134, 562–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Tavares, K.M.; Pereira, R.G.F.A.; Nunes, C.A.; Pinheiro, A.C.M.; Rodarte, M.P.; Guerreiro, M.C. Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Química Nova 2012, 35, 1164–1168. [Google Scholar] [CrossRef] [Green Version]
- Reis, N.; Franca, A.S.; Oliveira, L.S. Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT-Food Sci. Technol. 2013, 50, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Zhang, D.; Liu, L.; Wang, Z. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method. Food Chem. 2017, 218, 413–421. [Google Scholar] [CrossRef]
- Dhanoa, M.S.; Lister, S.J.; Sanderson, R.; Barnes, R.J. The link between Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV) transformations of NIR spectra. J. Near Infrared Spectrosc. 1994, 2, 43–47. [Google Scholar] [CrossRef]
- Simmons, K.; Kinney, J.; Owens, A.; Kleier, D.; Bloch, K.; Argentar, D.; Walsh, A.; Vaidyanathan, G. Comparative study of machine-learning and chemometric tools for analysis of in-vivo high-throughput screening data. J. Chem. Inf. Model. 2008, 48, 1663–1668. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Cai, J.; Wan, X.; Zhao, J. Application of linear/non-linear classification algorithms in discrimination of pork storage time using Fourier transform near infrared (FT-NIR) spectroscopy. LWT-Food Sci. Technol. 2011, 44, 2053–2058. [Google Scholar] [CrossRef]
- Li, J.; Zhao, C.; Huang, W.; Zhang, C.; Peng, Y. A combination algorithm for variable selection to determine soluble solid content and firmness of pears. Anal. Methods 2014, 6, 2170–2180. [Google Scholar] [CrossRef]
- Botelho, B.G.; Mendes, B.A.; Sena, M.M. Implementação de um método robusto para o controle fiscal de umidade em queijo minas artesanal. Abordagem metrológica multivariada. Química Nova 2013, 36, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
Parameters | Robusta Coffee | Husk |
---|---|---|
Moisture (%) | 2.54 ± 0.32 a | 3.24 ± 0.59 a |
Ash (%) | 3.62 ± 0.28 a | 6.26 ± 0.20 b |
Protein (%) | 16.19 ± 0.11 a | 14.59 ± 0.19 b |
Lipid (%) | 5.46 ± 0.29 a | 6.23 ± 0.10 b |
Fiber (%) | 5.76 ± 0.09 a | 6.19 ± 0.06 b |
Carbohydrate (%) | 68.98 ± 0.66 a | 66.73 ± 0.38 b |
Polyphenols (mg/kg) | 4373.30 ± 65.80 a | 354.30 ± 29.0 b |
Antioxidant (mg/kg) | 4416.80 ± 18.50 a | 739.67 ± 7.43 b |
Model | Preprocessing | Sets | Accuracy (%) | Error (%) | TPR (%) | TNR (%) | FPR (%) | FNR (%) |
---|---|---|---|---|---|---|---|---|
SVM | FD | Calibration | 99.26 | 0.74 | 100.00 | 100.00 | 0.00 | 0.00 |
Prediction | 93.94 | 6.06 | 100.00 | 100.00 | 0.00 | 0.00 | ||
LDA | FD | Calibration | 97.78 | 2.22 | 100.00 | 100.00 | 0.00 | 0.00 |
Prediction | 100.00 | 0.00 | 100.00 | 100.00 | 0.00 | 0.00 | ||
NN | FD | Calibration | 96.30 | 3.70 | 100.00 | 99.05 | 0.00 | 0.95 |
Prediction | 96.97 | 3.03 | 100.00 | 100.00 | 0.00 | 0.00 | ||
RF | FD | Calibration | 95.56 | 4.44 | 100.00 | 100.00 | 0.00 | 0.00 |
Prediction | 96.97 | 3.03 | 100.00 | 100.00 | 0.00 | 0.00 |
Models | Variables | Calibration Set | Prediction Set | RPD | ||||
---|---|---|---|---|---|---|---|---|
R | RMSECV | Bias | R | RMSEP | Bias | |||
PLS | 331 | 0.9626 | 10.7187 | 0.9867 | 0.9858 | 5.2485 | 0.7422 | 6.0179 |
iPLS | 16 | 0.9701 | 9.6209 | 0.2049 | 0.9704 | 8.2453 | −0.8647 | 3.8306 |
biPLS | 49 | 0.9682 | 9.9263 | 0.1241 | 0.9708 | 8.2086 | −0.6206 | 3.8478 |
Si-PLS | 50 | 0.9799 | 7.888 | 0.0056 | 0.9824 | 6.0610 | −1.4073 | 5.2111 |
GaPLS | 331 | 0.9674 | 10.0189 | −0.1527 | 0.9792 | 7.1855 | −3.1656 | 4.3956 |
SPA-PLS | 10 | 0.9711 | 9.4455 | 0.8695 | 0.9897 | 4.4753 | 0.6329 | 7.0576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boadu, V.G.; Teye, E.; Amuah, C.L.Y.; Lamptey, F.P.; Sam-Amoah, L.K. Portable NIR Spectroscopic Application for Coffee Integrity and Detection of Adulteration with Coffee Husk. Processes 2023, 11, 1140. https://doi.org/10.3390/pr11041140
Boadu VG, Teye E, Amuah CLY, Lamptey FP, Sam-Amoah LK. Portable NIR Spectroscopic Application for Coffee Integrity and Detection of Adulteration with Coffee Husk. Processes. 2023; 11(4):1140. https://doi.org/10.3390/pr11041140
Chicago/Turabian StyleBoadu, Vida Gyimah, Ernest Teye, Charles L. Y. Amuah, Francis Padi Lamptey, and Livingstone Kobina Sam-Amoah. 2023. "Portable NIR Spectroscopic Application for Coffee Integrity and Detection of Adulteration with Coffee Husk" Processes 11, no. 4: 1140. https://doi.org/10.3390/pr11041140
APA StyleBoadu, V. G., Teye, E., Amuah, C. L. Y., Lamptey, F. P., & Sam-Amoah, L. K. (2023). Portable NIR Spectroscopic Application for Coffee Integrity and Detection of Adulteration with Coffee Husk. Processes, 11(4), 1140. https://doi.org/10.3390/pr11041140