Influence of Varying Amounts of Alumina (Al2O3) on the Wear Behavior of ZnO, SiO2 and TiO2 Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Materials
2.2. Characterization
2.3. Pin-on-Disc Wear Testing
2.4. Microhardness Measurement
3. Results
3.1. XRD
3.2. SEM-EDS Analysis
3.3. Wear Test and Weight Losses
3.4. Friction Coefficients
3.5. Hardness
4. Discussion
5. Conclusions
- According to XRD results, it was observed that a crystalline structure was formed in all materials and no new peaks were formed depending on the increase in alumina content;
- Rutile, spinel, quartz, sillimanite, kyanite, mullite, zincite, cristobalite and gahnite phases were determined in XRD results. The resulting phases were compatible with the starting compounds;
- It was observed that two complex phases with unclear grain boundaries were formed in the SEM results. The reduction of crystallinity in the XRD results could not be identified in the SEM images because of liquid phase sintering;
- The elements in the general EDS analysis and the crystalline phases formed in the XRD analysis were consistent with each other. Additionally, overall EDS analysis results were found to be compatible with the weight percentages determined in the beginning phase;
- It was observed that the wear track and depth were increased as the wear load increased for the same material. Besides, in general, the Al2O3 contents increasing with wear track and depth were found to be inversely proportional under the same wear load;
- The highest weight loss under different wear loads was obtained in the Ti55Si15Zn20Al10 material. It was determined that as the Al2O3 wt% increased in the compositions, the weight losses decreased, and the microhardness values increased generally.
- As a result of weight measurements taken before and after wear tests, the highest weight loss was observed at 30 N in the material with 10 percent alumina content. When the alumina content was increased to 20 percent and 30 percent, it was observed that the weight losses decreased because of possible oxide compounds formed on the worn surfaces, causing plastic deformation;
- When the hardness measurement results were examined, it was observed that the highest value occurred in the material containing 20 percent alumina, while the lowest value occurred in the material without alumina. When the weight losses of wear tests and microhardness results were evaluated together, it was concluded that the optimum alumina content was 20 percent.
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Ruiying, Z.; Sen, Y.; Jinxuan, L.; Han, Y. Effect of TiO2 particle size on reinforcements, reaction mode and kinetics in Al- TiO2-C system. Mater. Res. Exp. 2019, 6, 116505. [Google Scholar] [CrossRef]
- Ghasali, E.; Alizadeh, M.; Ebadzadeh, T. TiO2 ceramic particles-reinforced aluminum matrix composite prepared by conventional, microwave, and spark plasma sintering. J. Compos. Mater. 2018, 52, 2609–2619. [Google Scholar] [CrossRef]
- Islak, S.; Buytoz, S.; Ersöz, E.; Orhan, N.; Stokes, J.; Hashmi, M.S.; Somunkıran, I.; Tosun, N. Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced using plasma spray method. Optoelectron. Adv. Mat. 2013, 6, 844–849. [Google Scholar]
- Kumar, G.V.; Gouda, P.S.; Pramod, R.; Rao, C.S.P. Synthesis and characterization of TiO2 reinforced Al6061 composites. Adv. Compos. Lett. 2017, 26, 096369351702600104. [Google Scholar] [CrossRef]
- Joshua, K.J.; Vijay, S.J.; Selvaraj, D.P. Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites. Ceram. Int. 2018, 44, 20774–20781. [Google Scholar] [CrossRef]
- Nayak, R.K.; Mahato, K.K.; Routara, B.C.; Ray, B.C. Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites. J. Appl. Polym. Sci. 2016, 133, 44274. [Google Scholar] [CrossRef]
- Sathiyakumar, M.; Gnanam, F.D. Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2O3. Ceram. Int. 2002, 28, 195–200. [Google Scholar] [CrossRef]
- Sadooghi, A.; Hashemi, S.J. Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of aluminum matrix nanocomposites produced by powder metallurgy process. Mater. Res. Exp. 2019, 6, 105019. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Ohtsuki, C.; Inada, H.; Tanihara, M.; Miyazaki, T. Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass–ceramics containing apatite and wollastonite. Acta. Biomater. 2006, 2, 467–471. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Nguyen, T.V.; Thai, H.; Shi, X. Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. J. Nanosci. Nanotechno. 2016, 16, 9874–9881. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Romero, J.J.; Navarro-Rojero, M.G.; Fernandez, J.F. Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 2009, 29, 3045–3052. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D.W.; Lin, H.B.; Zhao, Q.L.; Zhang, D.Q.; Cao, M.S. Effect of ZnO whisker content on sinterability and fracture behaviour of PZT peizoelectric composites. J. Alloy. Compd. 2010, 504, 123–128. [Google Scholar] [CrossRef]
- Ta, T.-N.; Chern, S.-Y.; Horng, J.-H. Tribological Behavior of Ionic Liquid with Nanoparticles. Materials 2021, 14, 6318. [Google Scholar] [CrossRef] [PubMed]
- Emamgholizadeh, A.; Omrani, A.; Rostami, A.A.; Rostami, A. Corrosion Protection of Steel 316 Using Coatings Based on Epoxy and Poly p-Phenylendiamine–SiO2 Nanocomposite. Chem. Eng. Commun. 2015, 202, 1389–1396. [Google Scholar] [CrossRef]
- Jiang, T.; Kuila, T.; Kim, N.H.; Ku, B.C.; Lee, J.H. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos. Sci. Technol. 2013, 79, 115–125. [Google Scholar] [CrossRef]
- Palraj, S.; Selvaraj, M.; Maruthan, K.; Rajagopal, G. Corrosion and wear resistance behavior of nano-silica epoxy composite coatings. Prog. Org. Coat. 2015, 81, 132–139. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Jannesari, A.; Ranjbar, Z.; Sobhani, S.; Saeb, M.R. Anti-corrosion hybrid coatings based on epoxy–silica nano-composites: Toward relationship between the morphology and EIS data. Prog. Org. Coat. 2014, 77, 1169–1183. [Google Scholar] [CrossRef]
- Hussain, S.; Anis-ur-Rehman, M.; Maqsood, A.; Awan, M.S. The effect of SiO2 addition on structural, magnetic and electrical properties of strontium hexa-ferrites. J. Cryst. Growth 2006, 297, 403–410. [Google Scholar] [CrossRef]
- Deka, B.K.; Baishya, P.; Maji, T.K. Synergistic effect of SiO2, ZnO and nanoclay on mechanical and thermal properties of wood polymer nanocomposite. J. Thermoplast. Compos. 2014, 27, 464–480. [Google Scholar] [CrossRef]
- Larsen, P.H.; Poulsen, F.W.; Berg, R.W. The influence of SiO2 addition to 2MgO–Al2O3–3.3P2O5 glass. J. Non-Cryst. Solids 1999, 244, 16–24. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S. The effect of SiO2-doped boron nitride multiple coatings on mechanical properties of quartz fibers. Appl. Surf. Sci. 2012, 258, 2901–2905. [Google Scholar] [CrossRef]
- Agrawal, A.; Satapathy, A. Effect of Al2O3 addition on thermo-electrical properties of polymer composites: An experimental investigation. Polym. Compos. 2015, 36, 102–112. [Google Scholar] [CrossRef]
- Dhara, A.; Mishra, R.K.; Shukla, R.; Valsala, T.P.; Sudarsan, V.; Tyagi, A.K.; Kaushik, C.P. A comparative study on the structural aspects of sodium borosilicate glasses and barium borosilicate glasses: Effect of Al2O3 addition. J. Non-Cryst. Solids 2016, 447, 283–289. [Google Scholar] [CrossRef]
- dos Santos, C.; Teixeira, L.H.P.; Strecker, K.; Elias, C.N. Effect of Al2O3 addition on the mechanical properties of biocompatible ZrO2-Al2O3 composites. Mater. Sci. Forum. 2006, 530, 575–580. [Google Scholar] [CrossRef]
- Zhou, J.E.; Zhang, J.; Zhang, X.Z.; Hu, X.B. Effect of Al2O3 addition on microstructure, thermal expansion and mechanical properties of Ta2O5 ceramics. Key Eng. Mater. 2012, 512, 631–634. [Google Scholar] [CrossRef]
- Farvizi, M.; Ebadzadeh, T.; Vaezi, M.R.; Kim, H.S.; Simchi, A. Effect of nano Al2O3 addition on mechanical properties and wear behavior of NiTi intermetallic. Mater. Design 2013, 51, 375–382. [Google Scholar] [CrossRef]
- Spencer, K.; Fabijanic, D.M.; Zhang, M.X. The influence of Al2O3 reinforcement on the properties of stainless steel cold spray coatings. Surf. Coat. Tech. 2012, 206, 3275–3282. [Google Scholar] [CrossRef]
- Bazrgari, D.; Moztarzadeh, F.; Sabbagh-Alvani, A.A.; Rasoulianboroujeni, M.; Tahriri, M.; Tayebi, L. Mechanical properties and tribological performance of epoxy/ Al2O3 nanocomposite. Ceram. Int. 2018, 44, 1220–1224. [Google Scholar] [CrossRef]
- Khalil, N.Z.; Johanne, M.F.; Ishak, M. Influence of Al2O3 nanoreinforcement on the adhesion and thermomechanical properties for epoxy adhesive. Compos. Eng. 2019, 172, 9–15. [Google Scholar] [CrossRef]
- Pranavi, U.; Venkateshwar Reddy, P.; Venukumar, S.; Cheepu, M. Evaluation of Mechanical and Wear Properties of Al 5059/B4C/Al2O3 Hybrid Metal Matrix Composites. J. Compos. Sci. 2022, 6, 86. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, J.; Wei, S.; Qi, M. Differences in Dry Sliding Wear Behavior between Al–12Si–CuNiMg Alloy and Its Composite Reinforced with Al2O3 Fibers. Materials 2019, 12, 1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ujah, C.O.; Kallon, D.V.V. Trends in Aluminium Matrix Composite Development. Crystals 2022, 12, 1357. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Attar, M.M.; Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J. Therm. Anal. Calorim. 2011, 103, 731–739. [Google Scholar] [CrossRef]
- Niksefat, N.; Jahanshahi, M.; Rahimpour, A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 2014, 343, 140–146. [Google Scholar] [CrossRef]
- Sato, K.; Ijuin, A.; Hotta, Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram. Int. 2015, 41, 10314–10318. [Google Scholar] [CrossRef]
- Jason, Y.J.J.; How, H.G.; Teoh, Y.H.; Chuah, H.G. A Study on the Tribological Performance of Nanolubricants. Processes 2020, 8, 1372. [Google Scholar] [CrossRef]
- Popović, S. Quantitative Phase Analysis by X-ray Diffraction—Doping Methods and Applications. Crystals 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Dechandt, I.C.J.; Soares, P.; Pascual, M.J.; Serbena, F.C. Sinterability and mechanical properties of glass-ceramics in the system SiO2-Al2O3-MgO/ZnO. J. Eur. Ceram. Soc. 2020, 40, 6002–6013. [Google Scholar] [CrossRef]
- Hansson, R.; Zhao, B.; Hayes, P.C.; Jak, E. A reinvestigation of phase equilibria in the system Al2O3-SiO2-ZnO. Metal. Mater. Trans. 2005, 36, 187–193. [Google Scholar] [CrossRef]
- Mao, H.; Selleby, M.; Sundman, B. Phase equilibria and thermodynamics in the Al2O3–SiO2 system—Modeling of mullite and liquid. J. Am. Ceram. Soc. 2005, 88, 2544–2551. [Google Scholar] [CrossRef]
- Demirel, M.; Koç, V. Analysing the Microstructures and Pin-on-Disc Wear Properties of 1010 Steel-Based and B4C-Added Materials Produced through Powder Metallurgy. World J. Eng. Technol. 2021, 9, 682–707. [Google Scholar] [CrossRef]
- Kurgan, N.; Sun, Y.; Cicek, B.; Ahlatci, H. Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties. Chinese Sci. Bull. 2012, 57, 1873–1878. [Google Scholar] [CrossRef] [Green Version]
- Suh, N.P. The delamination theory of wear. Wear 1973, 25, 111–124. [Google Scholar] [CrossRef]
- Ramesh, C.S.; Keshavamurthy, R. Influence of forging on mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites. Mater. Sci. Eng. 2012, 551, 59–66. [Google Scholar] [CrossRef]
- Al-Qutub, A.M.; Allam, I.M.; Samad, A. Wear and friction of Al–Al2O3 composites at various sliding speeds. J. Mater. Sci. 2008, 43, 5797–5803. [Google Scholar] [CrossRef]
- Jacob, R.; Nair, H.G.; Isac, J. Structural and morphological studies of nano-crystalline ceramic BaSr0.9Fe0.1TiO4. Int. Lett. Chem. Phys. Ins. 2015, 41, 100–117. [Google Scholar]
- Sharma, P.; Majumdar, J.D. Microstructural characterization and properties evaluation of Ni-based hardfaced coating on AISI 304 stainless steel by high velocity oxyfuel coating technique. Metal. Mater. Trans. 2013, 44, 372–380. [Google Scholar] [CrossRef]
- Li, X.Y.; Tandon, K.N. Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite. Wear 2000, 245, 148–161. [Google Scholar] [CrossRef]
- Vergne, C.; Boher, C.; Gras, R.; Levaillant, C. Influence of oxides on friction in hot rolling: Experimental investigations and tribological modelling. Wear 2006, 260, 957–975. [Google Scholar] [CrossRef] [Green Version]
- Aabid, A.; Murtuza, M.A.; Khan, S.A.; Baig, M. Optimization of dry sliding wear behavior of aluminium-based hybrid MMC’s using experimental and DOE methods. J. Mater. Res. Technol. 2022, 16, 743–763. [Google Scholar] [CrossRef]
- Bharath, V.; Auradi, V.; Nagaral, M.; Boppana, S.B.; Ramesh, S.; Palanikumar, K. Microstructural and wear behavior of Al2014-alumina composites with varying alumina content. Trans. Indian Inst. Met. 2022, 75, 133–147. [Google Scholar] [CrossRef]
- Mondal, D.P.; Das, S.; Jha, A.K.; Yegneswaran, A.H. Abrasive wear of Al alloy– Al2O3 particle composite: A study on the combined effect of load and size of abrasive. Wear 1998, 223, 131–138. [Google Scholar] [CrossRef]
- Arrabal, R.; Mohedano, M.; Matykina, E.; Pardo, A.; Mingo, B.; Merino, M.C. Characterization and wear behaviour of PEO coatings on 6082-T6 aluminium alloy with incorporated α-Al2O3 particles. Surf. Coat. Tech. 2015, 269, 64–73. [Google Scholar] [CrossRef]
- Fellah, M.; Samad, M.A.; Labaiz, M.; Assala, O.; Iost, A. Sliding friction and wear performance of the nano-bioceramic α-Al2O3 prepared by high energy milling. Tribol. Int. 2015, 91, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Farrokhzad, M.A.; Khan, T.I. Sliding wear performance of nickel-based cermet coatings composed of WC and Al2O3 nanosized particles. Surf. Coat. Tech. 2016, 304, 401–412. [Google Scholar] [CrossRef]
- Gugulothu, B.; Sankar, S.L.; Vijayakumar, S.; Prasad, A.S.V.; Thangaraj, M.; Venkatachalapathy, M.; Rao, T.V. Analysis of Wear Behaviour of AA5052 Alloy Composites by Addition Alumina with Zirconium Dioxide Using the Taguchi-Grey Relational Method. Adv. Mater. Sci. Eng. 2022, 2022, 7. [Google Scholar] [CrossRef]
Materials | TiO2 (wt%) | SiO2 (wt%) | ZnO (wt%) | Al2O3 (wt%) |
---|---|---|---|---|
Ti60Si15Zn20Al5 | 60 | 15 | 20 | 5 |
Ti55Si15Zn20Al10 | 55 | 15 | 20 | 10 |
Ti45Si15Zn20Al20 | 45 | 15 | 20 | 20 |
Ti35Si15Zn20Al30 | 35 | 15 | 20 | 30 |
Ti60Si20Zn20 | 60 | 20 | 20 | - |
Card Number | Compound | Lattice Parameters | ||
---|---|---|---|---|
a (Å) | b (Å) | c (Å) | ||
9015662 | Rutile (TiO2) | 4.599923 | 4.599923 | 2.963614 |
9001693 | Spinel (TiZn2O4) | 8.458678 | 8.458678 | 8.458678 |
9012600 | Quartz (SiO2) | 4.956337 | 4.956337 | 5.433133 |
9000714 | Sillimanite (Al2SiO5) | 7.475310 | 7.713990 | 5.700429 |
9001835 | Kyanite (Al2SiO5) | 7.052520 | 7.772450 | 5.515804 |
7105575 | Mullite (Al6Si2O13) | 7.564156 | 7.687715 | 2.886860 |
9008877 | Zincite (ZnO) | 3.255732 | 3.255732 | 5.221811 |
9001578 | Cristobalite (SiO2) | 5.002741 | 5.002741 | 6.908230 |
9013642 | Gahnite (Al2ZnO4) | 8.084869 | 8.084869 | 8.084869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, A.I. Influence of Varying Amounts of Alumina (Al2O3) on the Wear Behavior of ZnO, SiO2 and TiO2 Compounds. Processes 2023, 11, 1073. https://doi.org/10.3390/pr11041073
Kaya AI. Influence of Varying Amounts of Alumina (Al2O3) on the Wear Behavior of ZnO, SiO2 and TiO2 Compounds. Processes. 2023; 11(4):1073. https://doi.org/10.3390/pr11041073
Chicago/Turabian StyleKaya, Ali Ihsan. 2023. "Influence of Varying Amounts of Alumina (Al2O3) on the Wear Behavior of ZnO, SiO2 and TiO2 Compounds" Processes 11, no. 4: 1073. https://doi.org/10.3390/pr11041073
APA StyleKaya, A. I. (2023). Influence of Varying Amounts of Alumina (Al2O3) on the Wear Behavior of ZnO, SiO2 and TiO2 Compounds. Processes, 11(4), 1073. https://doi.org/10.3390/pr11041073