# Application of Neuro-Fuzzy Techniques for Energy Scheduling in Smart Grids Integrating Photovoltaic Panels

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Clustering and Classification Framework

#### 2.1. Clustering Concept

#### 2.2. Clustering Based on Self-Organizing Maps Neural Networks

#### 2.3. Clustering Based on Fuzzy Inference Systems

## 3. Energy from Renewable Sources Scheduling Approach

#### 3.1. Classification of Appliances Load Profiles

#### 3.2. Smart Home Energy Scheduling

_{i}, and finish no later than the due date d

_{i}. Every one of the appliances can process order i.

_{im}and P

_{im}. As a result, the goals may be formulated as follows: to reduce the processing costs of all of the orders, the important decisions in this scheduling problem are the assignment of orders to appliances, the order in which orders are placed on each appliance, and the start time for all orders.

_{TIME}time samples (e.g., the appliance begins), the energy scheduling problem [28] can be represented in this approach (see Equation (4)) as the minimization of a cost function:

## 4. Neuro-Fuzzy Knowledge-Based System

#### 4.1. Design of Neuro-Fuzzy Knowledge-Based System

#### 4.2. Simulation and Testing of Neuro-Fuzzy Knowledge-Based System

#### 4.3. Scheduling of Loads for Optimal Use of Energy

_{UL}) and that of the energy produced from RES (P

_{PV}), a gap could be observed between the moment when the energy was produced and the real initial behavior of the consumers, in the absence of scheduling. The difference (P

_{util}) was more evident in the case of the second scenario, when the amount of energy produced was smaller (Equation (10)).

_{util}= P

_{PV}− P

_{UL}

_{PV}(black), the consumption of uncontrollable loads (red), and the difference between power and consumption (blue), for both scenarios.

_{PV}; in red is the difference between the P

_{PV}, uncontrollable loads, and the washing machine consumption; and in blue is the amount of energy available after the dishwasher supply (Figure 12a).

## 5. Conclusions and Research in Progress

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Energy Roadmap 2050, Communication from the Commission to the European Parliament, the European Economic and Social Committee and the Committee of the Regions, Brussels, 15.12.2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF (accessed on 18 February 2023).
- Amin, S.M. Smart Grid: Overview, Issues and Opportunities. Advances and Challenges in Sensing, Modeling, Simulation, Optimization and Control. Eur. J. Control
**2011**, 17, 547–567. [Google Scholar] [CrossRef] [Green Version] - Zamora, R.; Srivastava, A.K. Controls for microgrids with storage: Review, challenges, and research needs. Renew. Sustain. Energy Rev.
**2010**, 14, 2009–2018. [Google Scholar] [CrossRef] - Vaccaro, A.; Popov, M.; Villacci, D.; Terzija, V. An Integrated Framework for Smart Microgrids Modeling, Monitoring, Control, Communication, and Verification. Proc. IEEE
**2011**, 99, 119–132. [Google Scholar] - Carrasco, J.M.; Franquelo, L.G.; Bialasiewicz, J.T.; Galvan, E.; PortilloGuisado, R.; Prats, M.A.M.; Leon, J.I.; Moreno-Alfonso, N. Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron.
**2006**, 53, 1002–1016. [Google Scholar] [CrossRef] - Dragomir, O.E.; Dragomir, F. Application of Scheduling Techniques for Load-Shifting in Smart Homes with Renewable-Energy-Sources Integration. Buildings
**2023**, 13, 134. [Google Scholar] [CrossRef] - Dragomir, O.E.; Dragomir, F. Development of User-friendly Tool for Energy Behavioral Change of Consumers. Sci. Bull. Electr. Eng. Fac.
**2016**, 1, 5–9. [Google Scholar] [CrossRef] - Bobric, E.C.; Cartina, G.; Grigoras, G. Clustering Techniques in Load Profile Analysis for Distribution Stations. Adv. Electr. Comput. Eng.
**2009**, 9, 63–66. [Google Scholar] [CrossRef] - Voyant, V.; Notton, N.; Kalogirou, S.; Nivet, M.-L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy
**2017**, 105, 569–582. [Google Scholar] [CrossRef] - Wei, C.-H.; Fahn, C.-S. The multisynapse neural network and its application to fuzzy clustering. IEEE Trans. Neural Netw.
**2002**, 13, 600–618. [Google Scholar] [CrossRef] - Cartina, G.; Grigoras, G.; Bobric, E.C. Clustering Techniques in Fuzzy Modeling. Power Systems Applications; Editura Venus: Iasi, Romania, 2005. [Google Scholar]
- Brun, M.; Sima, C.; Hua, J.; Lowey, J.; Carroll, B.; Suh, E.; Dougherty, E.R. Model-based evaluation of clustering validation measures. Pattern Recognit.
**2006**, 40, 807–824. [Google Scholar] [CrossRef] - Dragomir, O.E.; Dragomir, F.; Radulescu, M. Matlab Application of Kohonen Self—Organising Map to Classify Consumers’ Load Profiles. Procedia Comput. Sci.
**2014**, 31, 474–479. [Google Scholar] [CrossRef] [Green Version] - Rocha, H.R.; Honorato, I.H.; Fiorotti, R.; Celeste, W.C.; Silvestre, L.J.; Silva, J.A. An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes. Appl. Energy
**2021**, 282, 116145. [Google Scholar] [CrossRef] - Gerbec, D.; Gasperic, S.; Gubina, F. Comparison of Different Classification Methods for the Consumers’ Load Profile De-termination. In Proceedings of the 17th International Conference on Electricity Distribution, CIRED, Barcelona, Spain, 12–15 May 2003; Volume 6. [Google Scholar]
- Borlea, I.D.; Precup, R.E.; Dragan, F.; Borlea, A.B. Centroid Update Approach to K-Means Clustering. Adv. Electr. Comput. Eng.
**2017**, 17, 3–10. [Google Scholar] [CrossRef] - Zadeh, L.A. Fuzzy Sets and Information Granularity. In Advances in Fuzzy Sets Theory and Applications; Gupta, M.M., Ragade, R.K., Yager, R.R., Eds.; North-Holland Pub. Co.: Amsterdam, The Netherlands; New York, NY, USA, 1979; pp. 3–18. [Google Scholar]
- Dragomir, O.E.; Dragomir, F.; Stefan, V.; Minca, E. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources. Energies
**2015**, 8, 13047–13061. [Google Scholar] [CrossRef] [Green Version] - Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell.
**2002**, 24, 881–892. [Google Scholar] [CrossRef] - Kamishima, T.; Motoyoshi, F. Learning from Cluster Examples. Mach. Learn.
**2003**, 53, 199–233. [Google Scholar] [CrossRef] [Green Version] - Dragomir, O.; Dragomir, F.; Minca, E.; Dumitrache, C. Teoria sistemelor automate. In Fundamente Teoretice si Aplicatii Matlab; Editura MatrixRom: Bucharest, Romania, 2010; pp. 56–60. [Google Scholar]
- Asare, B.; Kling, W.L.; Ribeiro, P.F. Home energy management systems: Evolution, trends, and frameworks. In Proceedings of the Universities Power Engineering Conference, London, UK, 4–7 September 2012; pp. 1–5. [Google Scholar]
- Tostado, M.V.; Mouassa, S.; Jurado, F. A MILP framework for electricity tariff-choosing decision process in smart homes con-sidering ‘Happy Hours’ tariffs. Int. J. Electr. Power Energy Syst.
**2021**, 131, 8. [Google Scholar] - Döring, C.; Lesot, M.-J.; Kruse, R. Data analysis with fuzzy clustering methods. Comput. Stat. Data Anal.
**2006**, 51, 192–214. [Google Scholar] [CrossRef] - Júnior, M.P.; da Silva, M.T.; Guimarães, F.G.; Euzébio, T.A.M. Energy savings in a rotary dryer due to a fuzzy multivariable control application. Dry. Technol.
**2020**, 40, 1196–1209. [Google Scholar] [CrossRef] - Hamzah, A.; Shurman, M.; Al-Jarrah, O.; Taqieddin, E. Energy-Efficient Fuzzy-Logic-Based Clustering Technique for Hierarchical Routing Protocols in Wireless Sensor Networks. Sensors
**2019**, 19, 561. [Google Scholar] [CrossRef] [Green Version] - Lora, A.T.; Riquelme, J.C.; Ramos, J.L.M.; Santos, J.M.R.; Exposito, A.G. Application of evolutionary computation techniques to the optimal short-term scheduling of the electrical energy production. Curr. Top Artif. Intell.
**2003**, 3040, 656–665. [Google Scholar] - Dragomir, O.E.; Dragomir, F.; Gurgu, V.; Paun, M.; Duca, O.; Dragoi, C. Multi-agent System for Smart Grids with Produced Energy from Photovoltaic Energy Sources. In Proceedings of the 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI 2022), Ploiesti, Romania, 15 August 2022; pp. 1–6. [Google Scholar]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst.
**2001**, 16, 44–55. [Google Scholar] [CrossRef] - Pham, A.-D.; Ngo, N.-T.; Truong, T.T.H.; Huynh, N.-T.; Truong, N.-S. Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod.
**2020**, 260, 121082. [Google Scholar] [CrossRef]

**Figure 10.**The difference between P

_{PV}generated and the consumption of uncontrollable loads, for (

**a**) scenario 1; (

**b**) scenario 2.

Model of PV panel | PV, Luxor, 275 W, Polycrystalline |

Number of panels per module | 12 |

Nominal output power | P_{nom} = 275 W |

Number of cells | C = 60 |

Nominal current | I_{nom} = 8.77 A |

Nominal voltage | V_{nom} = 31.42 V |

Short circuit current | I_{sc} = 9.27 A |

Open circuit voltage | V_{oc} = 38.58 V |

Reference temperature | T_{ref} = 25 °C |

Number of solar panels connected in series | N_{S} = 12 |

Appliance | Type | Power (kW) | Operation Cycle Duration (h) |
---|---|---|---|

Dishwasher | Uninterruptible—independent | 1.4 | 1 |

Washing machine | Uninterruptible—dependent—consecutive | 1.5 | 2 |

Vacuum clener | Uninterruptible—independent | 1 | 1.5 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dragomir, O.E.; Dragomir, F.; Păun, M.; Duca, O.; Gurgu, I.V.; Drăgoi, I.-C.
Application of Neuro-Fuzzy Techniques for Energy Scheduling in Smart Grids Integrating Photovoltaic Panels. *Processes* **2023**, *11*, 1021.
https://doi.org/10.3390/pr11041021

**AMA Style**

Dragomir OE, Dragomir F, Păun M, Duca O, Gurgu IV, Drăgoi I-C.
Application of Neuro-Fuzzy Techniques for Energy Scheduling in Smart Grids Integrating Photovoltaic Panels. *Processes*. 2023; 11(4):1021.
https://doi.org/10.3390/pr11041021

**Chicago/Turabian Style**

Dragomir, Otilia Elena, Florin Dragomir, Marius Păun, Octavian Duca, Ion Valentin Gurgu, and Ioan-Cătălin Drăgoi.
2023. "Application of Neuro-Fuzzy Techniques for Energy Scheduling in Smart Grids Integrating Photovoltaic Panels" *Processes* 11, no. 4: 1021.
https://doi.org/10.3390/pr11041021