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Abstract: In wireless sensor networks, the energy source is limited to the capacity of the sensor
node’s battery. Clustering in WSN can help with reducing energy consumption because transmission
energy is related to the distance between sender and receiver. In this paper, we propose a fuzzy
logic model for cluster head election. The proposed model uses five descriptors to determine
the opportunity for each node to become a CH. These descriptors are: residual energy, location
suitability, density, compacting, and distance from the base station. We use this fuzzy logic model in
proposing the Fuzzy Logic-based Energy-Efficient Clustering for WSN based on minimum separation
Distance enforcement between CHs (FL-EEC/D). Furthermore, we adopt the Gini index to measure
the clustering algorithms’ energy efficiency in terms of their ability to balance the distribution of
energy through WSN sensor nodes. We compare the proposed technique FL-EEC/D with a fuzzy
logic-based CH election approach, a k-means based clustering technique, and LEACH. Simulation
results show enhancements in energy efficiency in terms of network lifetime and energy consumption
balancing between sensor nodes for different network sizes and topologies. Results show an average
improvement in terms of first node dead and half nodes dead.

Keywords: WSN; fuzzy interface system; energy; efficiency; lifetime; clustering

1. Introduction

Wireless Sensor Networks (WSN) are applied in many fields such as in health-care, environmental
sensing, and industrial monitoring [1–4]. A WSN is comprised of two sides: a Base Station (BS) and
a number of distributed sensor nodes that interact with the environment by sensing some physical
parameters. These sensors are required to perform sensing, initial data processing, and communication.
The BS is tasked with receiving, processing, and providing data to the end user for decision making [5–8].
Nodes in WSN rely on their on-board, limited, non-rechargeable, and non-changeable batteries.
Additionally, sensor nodes are limited in storage, memory, and CPU processing capabilities [6–11].

Because the sensor nodes and BS use wireless radio signals to exchange packets, energy-efficient
routing protocols play a vital role in energy consumption and network lifetime [6,9,10,12,13]. Direct
transmission to the BS consumes more energy than sending the same data over the same distance
in multiple stages of shorter distances. Accordingly, clustering has received attention by researchers.
Each node communicates directly with a Cluster Head (CH). In turn, the CH aggregates, compresses,
and transmits the data to the BS or a neighbor CH [6,7,12,14–16].

Clustering algorithms can be classified into centralized or distributed approaches. In centralized
approaches, the clustering algorithm utilizes the global knowledge of the network, while in the
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distributed approaches, local information is used to generate clusters. The Low Energy Adaptive
Clustering Hierarchy (LEACH) protocol [12] is the first technique based on a probabilistic approach in
CH election. Each node in the network generates a random number, and if this random number is less
than a threshold value, the node assigns itself as the cluster head and broadcasts an advertisement
message to all other nodes. Each of the receiving nodes (non-CHs) determines the CH to associate
with based on the signal strength of the advertisement message.

Developing an energy-efficient communication protocol is a critical goal in WSN. Several
energy-efficient routing protocols were proposed to address this issue. They all adopt the idea
of clustering or chaining sensor nodes so the transmission to the BS occurs in multi-hops.

Clustering allows multi-hop transmission, data aggregation, data compression, and redundant
data elimination. The benefits from clustering depend on the perfection of the clustering algorithm
and the fitness of the exploited parameters. Unlike distributed clustering algorithms, which are
performed by individual sensor nodes using their local information, the centralized clustering
algorithms performed by the BS allow optimal clustering solutions, because the overall view of
the WSN is available.

Many factors affect the clustering algorithms in WSN, for example the remaining energy in
the sensor nodes and the distances from their BS. However, if the problem is carefully analyzed,
other factors can be considered. Obtaining an optimal clustering solution requires scaling each
parameter by a weight corresponding to its influence on the dissipated energy and network lifetime.
Therefore, if the clustering algorithm exploits more energy-affecting factors, the clustering will be more
efficient. The Fuzzy Inference System (FIS) is an efficient modeling tool to combine parameters for
better parameter integration results.

We introduce a fuzzy-based centralized clustering technique for energy-efficient routing protocols
in WSN. The proposed clustering technique uses fuzzy logic to elect CHs and enforces a separation
distance between them for even CH distribution through the covered area. Separation distance is
calculated adaptively based on the number of remaining live nodes, the dimensions of the area covered
by these nodes, and the percentage of the desired CHs.

The proposed fuzzy model uses five parameters to prioritize opportunities of sensor nodes’ CH
election. These factors are: the remaining energy of the sensor node, distance to the BS, density of
surrounding sensor nodes (which are probable cluster members for the current sensor node if elected
as a CH), compacting of surrounding sensor nodes, and finally, the location suitability calculated via
the average of the local consumed energy for the surrounding nodes. As a secondary contribution to
this research, we suggest adopting the Gini index [17] for energy balance evaluation among nodes in
the WSN clustering algorithm.

The rest of this paper is organized as follows: In Section 2, we review the basics of WSNs and
fuzzy logic. Section 3 provides the methodology road-map for the proposed approach. Section 4
presents the performance evaluation, which begins with the simulation settings, followed by the
performance metrics, and ends with the results and discussion. Finally, Section 5 draws the conclusions
of the entire study and discusses further potentials of follow-up research.

2. Literature Review

Hierarchical Routing Protocols (HRPs) for WSN were introduced in the literature for
energy-efficient routing protocols. HRPs in WSN show higher energy and bandwidth efficiency
over conventional routing protocols. Unlike flat routing protocols, where sensors transmit their data
to the BS directly, HRPs allow sensors to transmit data via mediators. HRPs are either cluster based
or chain based. In cluster-based HRPs, sensors are organized into clusters, and transmissions go
through cluster heads, while in chain-based HRPs, sensors are organized as chains through which the
transmissions pass [14].

LEACH [12] is the pioneering and the most referenced HRP; it achieves a tremendous performance
regarding WSN useful lifetime and energy consumption balancing [18]. LEACH is a distributed
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cluster-based HRP that utilizes randomized rotation of CHs based on a probabilistic threshold to
distribute the energy load evenly among the sensors in the network. LEACH-C (LEACH-Centralized)
[19] is one of the most popular versions of LEACH; it is a cluster-based centralized approach in which
the CH election and distribution over the WSN are controlled by the BS using simulated annealing.
LEACH-C utilize nodes’ residual energies and positions from the BS [20]. LEACH-C has better
performance over LEACH in useful network lifetime and energy dissipation [19,20].

The authors of TEEN [21] classify sensor networks as proactive or reactive networks based on their
functional mode. In reactive mode, nodes respond immediately to the changes of relevant parameters
of interest, while sensor nodes in proactive mode respond to the changes of relevant parameters
of interest periodically. TEEN is an energy-efficient routing protocol for reactive WSN; it reduces
unnecessary or redundant transmissions. TEEN outperforms existing conventional WSN protocols in
energy efficiency.

Manjeshwar et al. [22] introduced APTEENas an extension to TEEN for both transmitting
periodic data and reacting to time-critical situations [23]. APTEEN allows three types of queries:
historical, on-time, and persistent, which are used in hybrid networks. Moreover, it introduces QoS
requirements for the on-time queries by minimum delay using the TDMA schedule with a special time
slot assignment [23].

HEED (Hybrid Energy-Efficient Distributed clustering) [6] periodically performs clustering of
WSN and CH selection for each cluster based on nodes’ residual energy as a primary parameter and
the proximity of a given node to its neighbors as a secondary parameter. HEED achieves uniform
CH distribution across the network, increases network scalability and lifetime, and balances load on
sensor nodes. Simulation results prove the effectiveness of HEED in prolonging network lifetime and
supporting scalable data aggregation.

PEGASIS (Power-Efficient Gathering in Sensor Information Systems) [7] is a chain-based HRP,
where each node communicates only with a close neighbor to reduce energy spent per round by
transmitting to the BS in rounds. PEGASIS outperforms LEACH by 100–300% when 1%, 20%, 50%,
and 100% of nodes die for different network sizes and topologies [7]. Cheng et al. [24] propose a way
to confine the election range of CHs in LEACH by exploiting residual energy, the relative density of
surrounding nodes, and centroid distance. Thereby, longer sensor nodes’ lifetime is achieved according
to the authors.

A novel approach of adopting the k-means clustering algorithm in WSN routing protocols has
been proposed in [25]. It achieves higher network lifetime over the existing LEACH and HEED, as
their simulation results demonstrated. In [26], the authors proposed the Load-balancing Cluster-based
Protocol (LCP) to increase network lifetime by the selection of the highest residual energy node in
each round to be CH in each cluster. A modification to LEACH considering residual energy and
node location to distribute CHs evenly was proposed in [27]. As the simulation results demonstrated,
LEACH was improved by 40% in survival time. In [28], Min and Chun proposed a cluster-based HRP
of two stages. In the first stage, the election of CHs is performed based on nodes’ residual energy and
their relative position to the base satiation. In the second stage, the CHs forward the collected data
to the BS indirectly via multi-hop forwarding, which prolongs network lifetime and saves energy, as
proven by their simulation results.

Li et al. proposed a centralized WSN clustering approach based on Discrete Particle Swarm
Optimization (DPSO) used in the context of the traveling sales-man problem [29]. In their approach,
the BS collects status information about sensor nodes, then runs their own modified version of the
DPSO algorithm to find the optimal topology for the WSN. This approach achieved 15% enhancement
over LEACH in terms of WSN lifetime and showed higher ability to balance energy consumption
among WSN nodes. In [30], the authors proposed a clustering technique for WSN based on applying
a non-deterministic approach and adopting intra-phase and inter-phase clustering. In each phase
of the non-deterministic approach, the optimal participation of clusters’ members in the process of
selecting the corresponding CHs is enforced. This technique achieved enhancement of 42% over



Sensors 2019, 19, 561 4 of 23

the standard LEACH in terms of WSN lifetime. In [31], a comparison study of genetic algorithm,
differential evolution, and particle swarm optimization for efficient and fast WSN clustering was
presented. In addition, the authors compared these techniques in terms of achieved fitness value.
Based on their results, these techniques had significant improvements over LEACH in terms of network
life-cycle and energy saving. A centralized clustering approach for HRP in WSN based on residual
energy for sensor nodes, remaining energy variance, and coverage density was proposed in [32].
The proposed approach outperformed the existing protocols in terms of network lifetime.

Singh et al. [33] applied a prediction-based data reduction scheme for energy-efficient routing
protocol design, where WSN is divided initially into grids, then CH election takes place. The authors
in [10,11,15,16,34], Refs. [35–47] proposed fuzzy logic approaches for CH election in cluster-based
HRPs. Each of these fuzzy logic-based approaches uses the partial combination of the parameters,
residual energy, BS proximity, local distance, concentration, centrality, etc., to select CHs, but none of
them uses an effective combination. Fuzzy logic-based clustering approaches proposed in the literature
vary among centralized, distributed, and hybrid. However, most of them are centralized because
fuzzy logic-based CH election requires high CPU cycles and high memory capacities. Furthermore,
fuzzy logic-based clustering algorithms require global knowledge about sensors’ attributes, which
would be costly in terms of energy and bandwidth if exchanged via the sensors themselves. Therefore,
for fuzzy logic-based clustering in WSN, the centralized approaches are preferred [10,11].

Another way to design routing protocols for ad hoc networks and/or WSN is the cross-layer
approach. Some examples of cross-layer protocols appeared in [48–50]. It has been observed that many
of the cross-layer approaches rely on fuzzy logic. The authors in [51] proposed a fuzzy logic-based
cross-layer routing algorithm for mobile ad hoc networks, while the research in [49] proposed a fuzzy
logic-based cross-layer routing algorithm for WSNs.

The different classes of WSN routing protocols for single-layer and cross-layer are summarized
in Table 1.

Table 1. Classes of WSN routing protocols.

Class Single Layer Cross Layer

Cluster Based

Centralized

Sensors are organized into clusters, and
transmissions go through CHs. In this
approach, node locations are estimated
by the BS. This benefits from the global

knowledge of the network and achieves a
more efficient clustering compared to the
distributed approach. Examples appear

in [19,25,26,29], and [32].

Information is collected and
combined from different

network layers to be utilized
for CH election. The works
in [49] and [51] follow this

approach.

Distributed

Sensors are organized into clusters in a
distributed manner, and transmissions go

through CHs. A drawback of this
approach is that it is confined to local

information, and this may lead to
non-optimal WSN

clustering [6,12,24,27,52].

Chain Based

Proactive

Sensors are periodically organized into
chains through which the transmissions

pass. An example of this approach is
found in [7].

Reactive

Sensors are organized as chains through
which the transmissions pass. Routes
change immediately in response to the

changes of relevant parameters of
interest [21].
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3. The Proposed Fuzzy Model and WSN Clustering Technique

In this section, we present the proposed fuzzy model used for CH election and a clustering
technique based on the proposed fuzzy model to accomplish optimal clustering in WSN.

Different factors influence CH election in WSN. Therefore, they must be combined appropriately
for the best decisions. FIS is an efficient mechanism for such a purpose. It allows combining all input
parameters in such a way that reflects their effectiveness in CH election.

To achieve maximum benefits from fuzzy logic for CH election, it is necessary to explore the
factors that have an impact on CH election, use effective means to measure each of these factors,
and build an efficient fuzzy model characterized by the effective combination of fuzzy rules and the
appropriate design for the fuzzy sets.

Accordingly, the proposed FIS model scheme in Figure 1 is built to meet the above-mentioned
requirements in order to achieve an efficient CH election in WSN.

Figure 1. Fuzzy system control model.

3.1. Linguistic Variables’ Measurement and Normalization

The lifetime of the WSN is considerably influenced by the technique used for CH election, which in
turn is influenced by many factors. These factors are expressed in the context of fuzzy logic as linguistic
variables. Five linguistic variables are involved in the proposed fuzzy controller. They influence the
network lifetime directly or indirectly by one of three aspects: energy consumed by CHs, total energy
consumed by non-CH nodes (local consumed energy), or the distribution of energy consumption loads
through sensor nodes.

The Min-Max normalization technique [53–55] (depicted in Equation (1)) is adopted for relative
scaling of linguistic variables’ values. The values are calculated relative to a universe of discourse of
zero and 100 according to their positions between minimum and maximum values. Finally, the sensor
node values of a given variable are scattered along the universe of discourse according to their relative
positions. Thus, the values of a given variable are normalized because they are required to assign
the sensor node of maximum value with the highest priority to become a CH. The rest of the sensor
nodes are prioritized according to their relative occurrences between the maximum and minimum
variable values.

Normalized (var) =
Value(var)−Min(var)
Max(var)−Min(var)

(1)

where Value(var) is the given value of the given variable for the given current node and Min(var)
and Max(var) are the minimum and maximum values of the given variable among all sensor
nodes, respectively.

Note that in the calculation of any linguistic variable for a particular sensor node, any surrounding
sensor nodes closer to a pre-selected CH must be excluded. This is because they will not become
members of this node’s cluster in case it was elected.
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The following are the linguistic variables used in our proposed system:

1. Remaining Energy: Selecting sensor nodes with higher energy as CHs improves network lifetime
by balancing energy consumption through the WSN’s nodes.

Energy is normalized by Equation (1), where Value(var) is Energy of the current node and
Max(var) and Min(var) are the maximum and minimum values among all candidate nodes,
respectively. Hence, the normalized Energy will be zero for the node with the lowest remaining
energy and 100 for the node with the highest remaining energy. The normalized Energy values
for the rest of nodes are between zero and 100 according to their relative position between the
highest and the lowest Energy values.

2. Distance from the BS: The lower the distance between CHs and the BS, the lower the consumed
energy. Sensor nodes closer to the BS have to be given higher opportunities to be CHs over
farther ones.

BS_Distance is normalized as a percentage value to the distance between the furthest candidate
node and the BS using Equation (1), where Max is the distance from the BS to furthest candidate
node, Min is the distance of the nearest node to the BS, and Valueis the distance of current node
from the BS.

For example, if the BS_Distance of the farthest node from the BS is 80 m, the BS_Distance of the
closest node to the BS is 30 m, and the BS_Distance of current node is 50 m, then the normalized
BS_Distance of the current node is:

Normalized(BS_Distance) =
50− 30
80− 30

× 100% = 40%

3. Location suitability: This criterion measures how suitable a node location is as a CH with respect
to surrounding nodes within a predefined range. A more suitable location for a CH node is a
location with lower total communication energy.

Location suitability for any node is measured by averaging the energy consumed locally by the
sensor nodes located around the current node within a pre-defined range. We are interested in
the nodes located within a predefined range as long as they are not closer in distance to any other
pre-selected CH because they will be probably members of the current node if this current node
wins CH election.

Since we use the average of the consumed energies for the current node, we use the term average of
local consumed energy and shorten it as AVG_Energy to point out the location suitability. Note that
we measure the average of the consumed energy rather than the total consumed energy to
guarantee that the size of the group does not have an effect on the normalized value.

Some consider, mistakenly, that if a node has a lower sum of distances to its future probable
members, then is situated at a more suitable location to become CH. This stems from the
assumption that the nodes closer to the centroid of the group will consume less total energy.
However, since the energy is exponentially proportional to the distance, it becomes necessary
to consider members with extreme distances. This means that the location with the minimum
average distances to other surrounding nodes in a predefined range is not always the most
suitable location for a node to become a CH since it may not always result in minimum total
consumed energy for its surrounding group of nodes.

To illustrate this idea, consider the scenario depicted in Figure 2. Here, node G has the minimum
average distance of 4.62488 m from its surrounding nodes, and is the closest to the centroid.
If selected as a CH, it will result in an average consumed energy of 2.535168× 10−7 J, for one
byte of data from each neighboring node. On the other hand, node F has an average distance of
5.12655 m, but results in an average consumed energy of 2.529408× 10−7 J. For that reason, we
base the computation of location suitability for a node to become a CH on the consumed energy
rather than the total distances.
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Figure 2. Simple WSN scenario for location suitability computation.

4. Density of surrounding nodes: Selecting CHs surrounded by dense nodes over CHs surrounded
by sparse nodes improves the energy consumption by increasing the opportunity for nodes with
more neighbors in their vicinity to become CHs. Thereby, the local consumed energy for the
group members is decreased.

Density is calculated by the number of surrounding nodes within a predefined range normalized
using Equation (1), where Value(var) is the density of the current node, Max(var) is the maximum
density value through all candidate nodes, and Min(var) is the minimum density value through
all candidate nodes.

5. Compaction of surrounding nodes: Group compaction is a measure of how the surrounding
nodes are distributed around the current node. A node surrounded by more neighbors in
a closer vicinity is considered of higher compactiondegree. Selecting a node with a higher
compactiondegree minimizes the total energy consumption. This criterion is important to assign
different priorities for CH candidates with the same number of surrounding nodes within a
predefined range. In other words, it is beneficial for distinguishing candidates surrounded by the
same density of sensor nodes.

Compaction is calculated as the ratio of the number of nodes located within the first vicinity region
to those located within the second vicinity region. The first vicinity region is that region that is
within half of a predefined radius distance, whereas the second vicinity region is the one that is
within the nodes’ radius.

As shown in Figure 3, the small circles surrounding A and B are considered as the first vicinities,
and the larger ones are considered as the second vicinities for nodes A and B. The distance to
which to extend the first vicinity is a design parameter and may be any fraction of the radius.

B's second vicinity

B's first vicinity

A

B

A's second vicinity

A's first vicinity

Figure 3. First and second vicinities of nodes A and B.
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To normalize the Compaction, we use Equation (1), where Value(var) is the Compaction value
of current node, Max(var) is the maximum Compaction value through all candidate nodes,
and Min(var) is the minimum compaction value through all candidate nodes.

3.2. Fuzzy Sets

Each of the linguistic variables is divided into overlapping fuzzy sets, called membership
functions. The crisp value of the linguistic variable belongs to each of the linguistic variable fuzzy sets
with a different degree of membership. The number of membership functions and their overlaps for
each of the inputs/output linguistic variables are taken based on the trial-and-error method over tens
of experiments.

In this section, we present membership functions for each of the five input linguistic variables
used and the output linguistic variable chance in Figure 4. Since each of the input parameters affects
the consumed energy and the WSN lifetime to a different extent, the Mamdani inference model rules
are formulated to reflect this nature of relationship. We ran tens of experiments to explore a better
construction of rules using the trial-and-error method. The rules’ combinations are shown in Table 2.

Table 2. Fuzzy rules.

SN. Input Variables Output Variable
Energy BS_Distance AVG_Energy Density Compaction Chance

1 Low Close Low Low Low LMid
2 Low Close Low Low High HMid
3 Low Close Low High Low HMid
4 Low Close Low High High High
5 Low Close High Low Low Low
6 Low Close High Low High LMid
7 Low Close High High Low LMid
8 Low Close High High High HMid
9 Low Medium Low Low Low VVLow

10 Low Medium Low Low High VLow
11 Low Medium Low High Low VLow
12 Low Medium Low High High LLMid
13 Low Medium High Low Low VVLow
14 Low Medium High Low High VVLow
15 Low Medium High High Low VVLow
16 Low Medium High High High VLow
17 Low Far Low Low Low VVLow
18 Low Far Low Low High VVLow
19 Low Far Low High Low VVLow
20 Low Far Low High High VVLow
21 Low Far High Low Low VVLow
22 Low Far High Low High VVLow
23 Low Far High High Low VVLow
24 Low Far High High High VVLow
25 Medium Close Low Low Low High
26 Medium Close Low Low High VVHigh
27 Medium Close Low High Low VVHigh
28 Medium Close Low High High VVHigh
29 Medium Close High Low Low HMid
30 Medium Close High Low High High
31 Medium Close High High Low High
32 Medium Close High High High VVHigh
33 Medium Medium Low Low Low LLMid
34 Medium Medium Low Low High Mid
35 Medium Medium Low High Low Mid
36 Medium Medium Low High High HHMid
37 Medium Medium High Low Low VLow
38 Medium Medium High Low High LLMid
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Table 2. Cont.

SN. Input Variables Output Variable
Energy BS_Distance AVG_Energy Density Compaction Chance

39 Medium Medium High High Low LLMid
40 Medium Medium High High High Mid
41 Medium Far Low Low Low VVLow
42 Medium Far Low Low High VVLow
43 Medium Far Low High Low VVLow
44 Medium Far Low High High Low
45 Medium Far High Low Low VVLow
46 Medium Far High Low High VVLow
47 Medium Far High High Low VVLow
48 Medium Far High High High VVLow
49 High Close Low Low Low VVHigh
50 High Close Low Low High VVHigh
51 High Close Low High Low VVHigh
52 High Close Low High High VVHigh
53 High Close High Low Low VVHigh
54 High Close High Low High VVHigh
55 High Close High High Low VVHigh
56 High Close High High High VVHigh
57 High Medium Low Low Low HHMid
58 High Medium Low Low High VHigh
59 High Medium Low High Low VHigh
60 High Medium Low High High VVHigh
61 High Medium High Low Low Mid
62 High Medium High Low High HHMid
63 High Medium High High Low HHMid
64 High Medium High High High VHigh
65 High Far Low Low Low Low
66 High Far Low Low High LMid
67 High Far Low High Low LMid
68 High Far Low High High HMid
69 High Far High Low Low VVLow
70 High Far High Low High Low
71 High Far High High Low Low
72 High Far High High High LMid

(a) Density (b) Compaction (c) AVG_Energy

(d) BS_Distance (e) Energy (f) Fuzzy output variable
chance

Figure 4. Membership Functions of the fuzzy sets.
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3.3. The Proposed Clustering Technique FL-EEC/D

The FL-EEC/D technique uses the aforementioned fuzzy model for CH election. It controls the
distribution of CHs based on determining and enforcing a specific minimum separation distance
between CHs to guarantee their fair distribution. Each CH must be far from the closest CH by the
distance d, as a minimum. The distance d is adaptive depending on the dimensions of the WSN,
the number of nodes, and the desired CHs percentage. It is computed using Algorithm 1.

Algorithm 1 Calculation of the minimum forced distance between CHs.

function CALC_MIN_DIST(N, p, dimX, dimY) N: List of live nodes
p: percentage of CHs in WSN
dimX: length of X-dimension, dimY: Length of Y-dimension

cc← ceiling(p× count(N))
cc: desired # of clusters

c← 1
c: # of of regional columns, initially set to 1

r← 1
r: # of regional rows, initially set to 1

d f ← cc− 1
d f : difference between # of created rectangles and the

desired # of clusters, initially set to cc− 1
I ← 1
while I ≤ ceiling(

√
cc) do

J← I
while J ≤ I + 1 do

if d f ≥ |cc− (I × J)| then
cc← |cc− (I × J)|
c← I
r← J

end if
J← J + 1

end while
I ← I + 1

end while
rX← dimX
rY← dimY
d←

√
rX2+rY2

2
return d d: minimum distance between CHs

end function

Firstly, Algorithm 1 virtually divides the WSN into identical regions that are aligned into rows and
columns resembling the shapes of rectangles. For the purpose of keeping the shapes of these rectangles
compacted, the dimensions of the rectangles are set to be as equal as possible. Therefore, the difference
between the number of rows and columns is not allowed to be more than one. The domain for the
allowed number of rectangles is the set of square numbers and the numbers that are products of two
successive numbers. This set is defined as:

K = {(pi × pi), (pi × pi+1); i ≥ 1, p ≥ 1}

In case the desired number of CHs does not belong to the set K, then it will be changed to the
nearest number within the set K. For example, if the required number of CHs is three, then the resulting
number of rectangles is either two or four. The number three does not belong to the set K because it is
neither a square number, nor a number that can be factored into two successive numbers. However,
the number two can be factored into the successive numbers two and one, and the number four is a
square number.

Since the rectangles are aligned in rows and columns, their total number does not always match
exactly the number of the desired clusters. The algorithm continues to add new columns in each time
until it creates a number of rectangles equal or as close as possible to the desired number of clusters.
The algorithm also adds a new row in each iteration before adding a new column to keep the number
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of rows as equal as possible to the number of columns. After that, the algorithm takes half of the
diagonal of any rectangle as the forced minimum separation distance between CHs, as shown in the
first rectangle by line |ab| in Figure 5.

Figure 5. WSN area divided into virtual identical rectangles.

The algorithm initially considers the whole WSN as a single rectangle, initializing the number of
column and rows to one. In each round of the outer loop of the algorithm, a new column of rectangles
is added. Furthermore, in each round of the inner loop, a new row of rectangles is added, where the
resulting number of rectangles is closer to the desired number of clusters. The outer loop continues to
loop as long as the number of columns is less than or equal to the square root of the desired number of
clusters, while the inner loop is responsible for adding rows loops twice for each outer loop round.

The clustering scheme is based on forcing a minimum separation distance between CHs. It begins
by selecting CHs using the proposed fuzzy inference model explained previously on the basis of
separating CHs by distance d and ends by forming clusters by mapping each node ni to the closest CHr.
Algorithm 2 provides the detailed steps. Figure 6 shows a snapshot of clustering output in FL-EEC/D.

Algorithm 2 Clustering based on minimum separation distance enforcement between CHs.

procedure WSN CLUSTERING
inputs:
N = {n1, n2, ..., nk} % N: set of live nodes %
range← d % d: minimum forced distance %
p % p: Percentage of live nodes to become CHs %
dc← Ceiling(p× count(N)) % dc: number of the desired CHs %
outputs:
CH = {CH1, CH2, ..., CHdc} % set of CHs %
C = {C1, C2, ..., Cdc} % set of clusters %
steps:

1) For each node ni ∈ N, if the distance from ni to the closest already selected CH is less than d,
then

calculate each of the fuzzy input variables: Energy, BS_Distance, Density, Compaction
AVG_Energy.

2) Calculate the fuzzy output variable chance for each ni ∈ N based on the linguistic variables
using

the proposed fuzzy inference system
3) Select ni with the highest chance value among the nodes located away from any pre-selected

CH by the distance d
4) Repeat Steps 1–4 until reaching dc
5) Form clusters, C = {C1, C2, ..., Cdc}, by joining each ni ∈ N to the closest CHr ∈ CH

end procedure



Sensors 2019, 19, 561 12 of 23

Figure 6. A snapshot of clustering output in FL-EEC/D.

4. Performance Evaluation

We implemented the algorithms in .NET using the FuzzyLite library. It is used to simulate and
evaluate comparatively the efficiency of the proposed approach in terms of lifetime, overall remaining
energy, and energy balancing against the well-known clustering algorithm LEACH [12] and against
approaches proposed in [34] and [25].

In [34], the authors proposed a fuzzy logic model for CH election in WSN; while the approach
proposed in [25] is based on the well-known K-means clustering algorithm. In this work, we refer to
them as FL[1]/D and reference the approach proposed in [34] as K-means-LEACH; respectively.

4.1. Simulation Parameters

We adopt the first order model [12] for the simulations. Here, the energy consumed for sending a
k-bit message for a distance d is calculated as:

ETx(K, d) = K(Eelec + εamp × d2) (2)

where Eamp is the energy consumed by the amplifier circuit to send one bit for a distance of one
meter. εamp can be expressed as ε f s or εmp according to the distance between the source node and the
destination node.

For the simulations, the nodes are randomly distributed over the area of the WSN. The sensors
are connected to their BS via a single level of CHs. Each node sends five packets per round, with each
packet containing 500 bytes.

Table 3 shows the common simulation parameters for the WSN through the simulation
experiments [56].

Table 3. Simulation parameters.

Parameter Value

Data Packet Size 500 bytes
Initial Energy 2 J
Eelec 50 nJ/bit
ε f s 10 nJ/bit/m2 bytes
E f us 5 nJ/bit/signal
εmp 0.0013 nJ/bit/m4

Threshold Distance d0 87 m
Deployment Method Random
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4.2. Network Model

We make the following assumptions in evaluating the proposed approach.

1. All sensor nodes are randomly distributed over a two-dimensional area.
2. All sensor nodes are homogeneous in terms of processing and communication capabilities.

Furthermore, they have the same battery, radio, sensing, and storage capabilities.
3. There are no recharging capabilities.
4. The BS is able to estimate the locations of the sensor nodes by using any localization technique.

This may be based on utilizing GPS [57,58] or by adopting GPS-free localization such as weighted
centroid localization [59–61], which is based on the received signal strength. Generally, a small
error in localization will not be significant for the overall clustering result since the values are
calculated as relative variances between the lowest and highest values. These relative variances
are later fuzzified (expressed as linguistic variables). The percentage of cluster heads is supposed
to be 5% of the total number of sensor nodes in the WSN.

5. Cluster heads are re-selected periodically.

4.3. Performance Metrics

We considered the metrics of lifetime and total consumed energy to evaluate the schemes and
methods proposed by this research comparatively. However, using the total consumed energy per
round to measure energy efficiency may not be an accurate measure for lifetime evaluation. This is
because the total energy might be maintained by a small percentage of nodes, while all other nodes
were depleted or the total maintained energy might be less, but is distributed over a larger percentage
of nodes. In order to judge the energy efficiency of the WSN clustering technique accurately, we
propose a way to measure how much the clustering technique can maintain of the remaining total
energy distributed equally through the nodes. If it manages to keep the total remaining energy
distributed more equally, then more nodes will be live for further rounds. To the best of our knowledge,
this metric of equality for the distribution of remaining energy through the nodes is used here for the
first time. Furthermore, we use the well-known Gini index as a means to measure this property.

The Gini index is used in the context of measuring the extent of the inequality of income among
the population or to measure how unequally the resources are distributed among population samples.
The Gini index value is between zero and one; a value of zero means the inequality of the measured
resource among all samples is zero, i.e., the resource is distributed equally among population samples,
which happens when all samples have the same amount of resource; while a Gini index value of one
means that the inequality of resources among population samples is at the maximum, when all of
the resources are possessed by one sample only. In general, the larger the value of the Gini index,
the more unequal the resources among the population samples, and vice versa. Mathematically, the
Gini coefficient is defined as the ratio of area confined between the wealth distribution curve, Lorenz
curve, and the line of equality, area A, to the area under the line of equality, area A + B, in Figure 7.
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Figure 7. Lorenz curve and the line of equality for the distribution of wealth.

The Lorenz curve is the accumulative percentage of people against the accumulative share of
wealth [62]. However, in the context of this research, the population is the sensor nodes, and the
remaining energy is used in place of wealth. We adopt it to measure the extent to which the clustering
algorithm keeps the remaining energy distributed equally among the nodes. Thus, the smaller the
Gini index, the more equal the distribution of the remaining energy.

We also measure the network lifetime in terms of the First Node Dead (FND), 10% of Nodes Dead
(10PND), Quarter of Nodes Dead (QND), Half of Nodes Dead (HND), and 75% of nodes dead.

4.4. Evaluation of FL-ECC/D

A comparative evaluation of FL-EEC/D is performed using many scenarios, to illustrate and
validate its behavior under different densities, sparse, moderate, or dense, and through different
positions of the BS. The comparison is based on the metric of energy balancing and network lifetime in
terms of FND, 10PND, QND, and HND. All nodes in the scenarios are randomly distributed over an
area of 200× 200 meters.

The proposed FL-EEC/D is comparatively evaluated for the case of positioning the BS at the center
of WSN. Figures 8–11 compare the achieved average lifetime of FL-EEC/D for FND, 10PND, QND, and
HND, respectively, against the achieved average lifetime of LEACH, FL[1]/D, and K-means-LEACH.
The network sizes are 50, 100, 200, 300, and 400 nodes.
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Figure 9. 10PND of FL-EEC/D against LEACH, K-means-LEACH, and FL[1]/D (BS at the center
of WSN).

It is clear from these four figures that the proposed FL-EEC/D achieved a longer average of
network lifetime for each of the terms FND, 10PND, QND, and HND, for all network sizes. For example,
considering Figure 8, we see that the network lifetime achieved by FL-EEC/D in terms of FND for
the network of 50 nodes was approximately 4.48-, 3-, and 1.6-times the average of that achieved by
LEACH, K-means-LEACH, and FL[1]/D, respectively.
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Figure 10. QND of FL-EEC/D against LEACH, K-means-LEACH, and FL[1]/D (BS at the center
of WSN).
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of WSN).

Figure 12 demonstrates the overall achieved enhancement of the proposed FL-EEC/D against
LEACH, FL[1]/D, and K-means-LEACH for the network lifetime metric in terms FND, 10PND, QND,
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and HND, for the five WSN sizes. The average improvement diminishes as the rounds progress, and
this indicates that we are achieving a good balance in the distribution of energy an extending the time
before the events of FND, 10PND, and QND occur.
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Figure 12. Average improvement percentage of FL-EEC/D over LEACH, K-means-LEACH, and
FL[1]/D for network lifetime (BS at the center of WSN).

We further evaluate the proposed FL-EEC/D for the same metrics, but change the position of the
BS to the corner of the WSN. Figures 13–16 present the achieved average network lifetime in terms of
FND, 10PND, QND, and HND, respectively, for the different WSN sizes.
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It is obvious from these figures that FL-EEC/D highly outperformed its counterparts. However,
placing the BS at a farther position resulted in a faster depletion of the nodes, for all schemes. Here,
the advantage of FL-EEC/D is more prevalent, as its enhancement over the other schemes became
higher, as demonstrated in Figure 17.

The improvements achieved by the FL-EEC/D scheme point to the ability of balancing the energy
through the nodes. This is a result of better selection of the CHs and interchanging the load over the
nodes in a more balanced approach.
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As shown in Figures 12 and 17, the improvement of network lifetime starts high for FND and
then gradually decreases for 10PND, QND, and HND, respectively. This sequence is evidence of the
strength of collaboration between different sensors to take loads of CH operations. Thus, most of the
nodes operate together for the longest possible duration and then almost die together. In other words,
they tend to die in groups rather than individually. This is contrary to the case of less balancing of
remaining energy between different sensors.

Referring to Figure 18, we see that the line representing the live nodes of FL-EEC/D takes the
form of a step function with a sudden drop, while the line representing the live nodes of LEACH tends
to decrease gradually, and the drops are larger in the earlier period of network lifetime. Thus, most of
the nodes in LEACH die through the earlier period of network lifetime. In contrast, the FL-EEC/D
overcomes this shortcoming and always works to prolong sensors lifetime when it is worthy to keep
them alive.

To analyze the energy consumption in FL-EEC/D versus the other techniques, we take a WSN
consisting of 200 nodes distributed randomly over an area of 200 × 200 meters using the same
simulation parameters listed in Table 3. The BS is located in the area at position (100, 100). The efficiency
of managing energy by minimizing total consumed energy and balancing it among the sensors is
the idea behind prolonging the network lifetime. Moreover, as observed earlier, minimizing the total
consumed energy without balancing the energy reserves of the nodes does not necessarily result in
better network lifetime. It is more important to minimize the differences between remaining energies
among the different nodes.
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Figure 18. Live nodes vs. rounds for FL-EEC/D and LEACH.

Figure 19 depicts the percentage of total remaining energy for the rounds before HND. The figure
shows that the FL-EEC/D conserves more total energy than the other three schemes. It also shows that
the FL-EEC/D tends to consume energy gradually per round in equal amounts.
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Figure 19. Percentage of total remaining energy per round for FL-EEC/D, LEACH, K-means-LEACH,
and FL[1]/D.

Figure 20 shows that the proposed FL-EEC/D achieves significantly lesser Gini index values for
the remaining energy via all the rounds before HND occurrence. This means that the FL-EEC/D keeps
the remaining energy among the nodes more equally balanced compared to the three other protocols.

Figure 20. The Gini Index of the remaining energy per round for FL-EEC/D, LEACH, K-means-LEACH,
and FL[1]/D.

5. Conclusions and Future Work

FISs are the best choice for building effective clustering algorithms/techniques for energy-efficient
routing protocols in WSN, due to its high ability of combining and effectively blending input
parameters to produce proper decisions about CH selections.

To achieve the best possible results of energy-efficient routing protocols in WSN, it is
recommended to utilize every parameter having an effect on the energy efficiency of the WSN routing
protocol. Furthermore, it is recommended to integrate them in a way that reflects the extent to which
each affects the energy efficiency of the WSN. In this work, we introduced the FL-EEC/D clustering
technique for energy-efficient routing protocols. Furthermore, we proposed an efficient fuzzy logic
used by this clustering technique to perform CH election. This fuzzy logic utilizes five parameters to
determine the strength of each sensor’s chance to be a CH. These parameters are: remaining energy
of the given sensor node, distance of sensor nodes from the BS, density of other surrounding sensor
nodes around the candidate CH, compaction of nodes around the sensor node, and the average of
the local consumed energy. We set a condition to control the distribution of CHs over the WSN
area by forcing an adaptive minimum separation distance between CHs to guarantee their even
distribution. FL-EEC/D was comparatively evaluated by simulating various WSN scenarios against
LEACH [12], K-means-LEACH [25], and FL[1]/D [34] for the metrics of total energy consumption,
energy balancing, and network lifetime in terms of FND, 10PND, QND, and HND. Simulation results
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show that FL-EEC/D significantly outperforms these approaches in the metrics of network lifetime and
energy consumption efficiency in various simulated scenarios. Furthermore, we introduced the idea of
adopting the Gini index measurement mean for measuring the extent to which the WSN clustering
algorithm has the ability to balance energy consumption through all WSN sensor nodes. We used the
Gini index as a fair measurement tool for evaluating the energy efficiency of routing protocols in WSN
for the metric of balancing of energy distribution.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless Sensor Network
CH Cluster Head
BS Base Station
FL-EEC/D Fuzzy Logic-based Energy-Efficient Clustering based on minimum separation Distance enforcement

between CHs
LEACH Low Energy Adaptive Clustering Hierarchy
FIS Fuzzy Inference System
HRP Hierarchical Routing Protocols
PEGASIS Power-Efficient Gathering in Sensor Information Systems
DPSO Discrete Particle Swarm Optimization
FND First Node Dead
10PND 10% of Nodes Dead
QND Quarter of Nodes Dead
HND Half of Nodes Dead
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